【題目】如圖,在相鄰兩點距離為1的點陣紙上(左右相鄰或上下相鄰的兩點之間的距離都是1個單位長度),三個頂點都在點陣上的三角形叫做點陣三角形,請按要求完成下列操作:
(1)將點陣△ABC水平向右平移4個單位長度,再豎直向上平移5個單位長度,畫出平移后的△A1B1C1;
(2)連接AA1、BB1,則線段AA1、BB1的位置關(guān)系為 、數(shù)量關(guān)系為 .估計線段AA1的長度大約在 <AA1< 單位長度:(填寫兩個相鄰整數(shù));
(3)畫出△ABC邊AB上的高CD.
【答案】(1)見解析;(2)線段AA1的長度大約在6<AA1<7單位長度;(3)見解析.
【解析】
(1)依據(jù)△ABC水平向右平移4個單位長度,再豎直向上平移5個單位長度,即可畫出平移后的△A1B1C1;
(2)依據(jù)平移的性質(zhì),即可得到線段AA1、BB1的位置關(guān)系以及數(shù)量關(guān)系,根據(jù)勾股定理即可估計線段AA1的長度;
(3)依據(jù)點陣△ABC各頂點的位置,類比網(wǎng)格中畫垂線的方法,即可得出△ABC邊AB上的高CD.
(1)如圖所示,△A1B1C1即為所求;
(2)由平移的性質(zhì)知,線段AA1、BB1的位置關(guān)系為平行,數(shù)量關(guān)系為相等;
由勾股定理可得,AA1的長度為,
∴線段AA1的長度大約在6<AA1<7單位長度;
(3)如圖所示,CD即為所求.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,已知A(a,b),且a.b滿足,
(1)求A點的坐標及線段OA的長度;(2)點P為x軸正半軸上一點,且△AOP是等腰三角形,求P點的坐標;
(3)如圖2,若B(1,0),C(0,-3),試確定∠ACO+∠BCO的值是否發(fā)生變化,若不變,求其值;若變化,請求出變化范圍。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在中,AB=AC,∠ABC =,D是BC邊上一點,以AD為邊作,使AE=AD,+=180°.
(1)直接寫出∠ADE的度數(shù)(用含的式子表示);
(2)以AB,AE為邊作平行四邊形ABFE,
①如圖2,若點F恰好落在DE上,求證:BD=CD;
②如圖3,若點F恰好落在BC上,求證:BD=CF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學三班同學們就該校學生如何到校問題進行了一次調(diào)查,并將調(diào)查結(jié)果制成了條形圖和扇形統(tǒng)計圖,請你根據(jù)圖表信息完成下列各題:
(1)此次共調(diào)查了___________位學生.
(2)請將條形統(tǒng)計圖補充完整.
(3)這個學校有1000名學生,估計坐公交車的人有多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,完全相同的兩個菱形ABCD和ECGF的頂點C重合,∠B=∠F,點E恰好在邊AD上,延長ED交FG于點H.
(1)求證:∠B=∠ECB;
(2)連接BE、CH.
①試判斷四邊形BEHC的形狀,并說理理由;
②求證:CH平分∠DCG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1.直線AD∥EF,點B,C分別在EF和AD上,∠A=∠ABC,BD平分∠CBF.
(1)求證:AB⊥BD;
(2)如圖2,BG⊥AD于點G,求證:∠ACB=2∠ABG;
(3)在(2)的條件下,如圖3,CH平分∠ACB交BG于點H,設(shè)∠ABG=α,請直接寫出∠BHC的度數(shù).(用含α的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種小商品的成本價為10元/kg,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量w(kg)與銷售價x(元/kg)有如下關(guān)系w=﹣2x+100,設(shè)這種產(chǎn)品每天的銷售利潤為y(元).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當售價定為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校舉行全體學生“漢字聽寫”比賽,每位學生聽寫漢字39個.隨機抽取了部分學生的聽寫結(jié)果,繪制成如下的圖表,根據(jù)相關(guān)信息完成下列問題:
(1)統(tǒng)計表中的, ;
(2)扇形統(tǒng)計圖中“C組”所對應的圓心角的度數(shù)是 ;
(3)已知該校共有900名學生,如果聽寫正確的字的個數(shù)少于24個定為不合格,請你估計該校本次聽寫比賽不合格的學生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com