【題目】在□ABCD中,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形DEBF是矩形;
(2)若AF平分∠DAB,AE=3,BF=4,求□ABCD的面積.
【答案】(1)證明見解析(2)32
【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì),可證DF∥EB,然后根據(jù)一組對(duì)邊平行且相等的四邊形為平行四邊形可證四邊形DEBF是平行四邊形,然后根據(jù)有一個(gè)角是直角的平行四邊形是矩形可證;
(2)根據(jù)(1)可知DE=BF,然后根據(jù)勾股定理可求AD的長(zhǎng),然后根據(jù)角平分線的性質(zhì)和平行線的性質(zhì)可求得DF=AD,然后可求CD的長(zhǎng),最后可用平行四邊形的面積公式可求解.
試題解析:(1)∵四邊形ABCD是平行四邊形,
∴DC∥AB,即DF∥EB.
又∵DF=BE,
∴四邊形DEBF是平行四邊形.
∵DE⊥AB,
∴∠EDB=90°.
∴四邊形DEBF是矩形.
(2)∵四邊形DEBF是矩形,
∴DE=BF=4,BD=DF.
∵DE⊥AB,
∴AD===5.
∵DC∥AB,
∴∠DFA=∠FAB.
∵AF平分∠DAB,
∴∠DAF=∠FAB.
∴∠DAF=∠DFA.
∴DF=AD=5.
∴BE=5.
∴AB=AE+BE=3+5=8.
∴S□ABCD=AB·BF=8×4=32.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點(diǎn)在BC邊上,且拋物線經(jīng)過(guò)O,A兩點(diǎn),直線AC交拋物線于點(diǎn)D.
(1)求拋物線的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)若點(diǎn)M在拋物線上,點(diǎn)N在x軸上,是否存在以A,D,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地一天早晨的氣溫是-7 ℃,中午氣溫上升了11 ℃,下午又下降了9 ℃,晚上又下降了5 ℃,則晚上的氣溫為________ ℃.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)A(―2,4),B(m,2)都在同一個(gè)正比例函數(shù)圖象上,則m的值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示:
(1)∵_(dá)_______=__________(已知)
∴AB∥CD(同位角相等,兩條直線平行)
(2)∵_(dá)________=__________(已知)
∴AB∥CD(內(nèi)位角相等,兩條直線平行)
(3)∵_(dá)________+_________=180(已知)
∴AB∥CD(同旁內(nèi)角互補(bǔ),兩條直線平行)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的直角坐標(biāo)系中,解答下列問題:
(1)分別寫出A、B兩點(diǎn)的坐標(biāo);
(2)將△ABC向左平移3個(gè)單位長(zhǎng)度,再向上平移5個(gè)單位長(zhǎng)度,畫出平移后的△A1B1C1;
(3)求 △A1B1C1的面積。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com