【題目】如圖,已知ABO的直徑,CO上的點(diǎn),連接ACCB,過OEOCB并延長EOF,使EOFO,連接AF并延長,AFCB的延長線交于D.求證:AE2FGFD

【答案】詳見解析

【解析】

如圖,連結(jié)BF、BG.由AEO≌△BFO的對應(yīng)邊相等得到AE=BF,然后由圓周角定理和平行線的性質(zhì)易證FGB∽△FBD,則根據(jù)該相似三角形的對應(yīng)邊成比例證得結(jié)論.

證明:連結(jié)BFBG

∵在AEOBFO中,

,

∴△AEO≌△BFOAAS),

AEBF

又∵∠ACB90°EFBC,

∴∠OFB=∠AEO=∠ACB90°

∴∠FBD90°,

又∵BGFD

∴△FGB∽△FBD

,即,

AE2FGFD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正六邊形和正五邊形邊重合,的延長線與交于點(diǎn),則的度數(shù)是(  

A.141B.144C.147D.150

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位現(xiàn)要組織其市場和生產(chǎn)部的員工游覽該公園,門票價格如下:

購票人數(shù)

150

51100

100以上

門票價格

13/

11/

9/

如果按部門作為團(tuán)體,選擇兩個不同的時間分別購票游覽公園,則共需支付門票費(fèi)為1245元;如果兩個部門合在一起作為一個團(tuán)體,同一時間購票游覽公園,則需支付門票費(fèi)為945元.那么該公司這兩個部的人數(shù)之差的絕對值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+c的對稱軸為直線x=﹣1,部分圖象如圖所示,下列判斷中:①abc0;②b24ac0;③9a3b+c0;④若點(diǎn)(﹣0.5,y1),(﹣2,y2)均在拋物線上,則y1y2;⑤5a2b0;其中正確的個數(shù)有(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AM是△ABC的中線,D是線段AM上一點(diǎn)(不與點(diǎn)A重合).DE∥AB交AC于點(diǎn)F,CE∥AM,連結(jié)AE.

(1)如圖1,當(dāng)點(diǎn)D與M重合時,求證:四邊形ABDE是平行四邊形;

(2)如圖2,當(dāng)點(diǎn)D不與M重合時,(1)中的結(jié)論還成立嗎?請說明理由.

(3)如圖3,延長BD交AC于點(diǎn)H,若BH⊥AC,且BH=AM.

①求∠CAM的度數(shù);

②當(dāng)FH=,DM=4時,求DH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:如圖1,在ABC看,把AB點(diǎn)繞點(diǎn)A順時針旋轉(zhuǎn)α(0°α180°)得到AB',把AC繞點(diǎn)A逆時針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時,我們稱A'B'C'是ABC的“旋補(bǔ)三角形”,AB'C'邊B'C'上的中線AD叫做ABC的“旋補(bǔ)中線”,點(diǎn)A叫做“旋補(bǔ)中心”.

特例感知:

(1)在圖2,圖3中,AB'C'是ABC的“旋補(bǔ)三角形”,AD是ABC的“旋補(bǔ)中線”.

如圖2,當(dāng)ABC為等邊三角形時,AD與BC的數(shù)量關(guān)系為AD= BC;

如圖3,當(dāng)BAC=90°,BC=8時,則AD長為

猜想論證:

(2)在圖1中,當(dāng)ABC為任意三角形時,猜想AD與BC的數(shù)量關(guān)系,并給予證明.

拓展應(yīng)用

(3)如圖4,在四邊形ABCD,C=90°,D=150°,BC=12,CD=2,DA=6.在四邊形內(nèi)部是否存在點(diǎn)P,使PDC是PAB的“旋補(bǔ)三角形”?若存在,給予證明,并求PAB的“旋補(bǔ)中線”長;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,弦AB垂直平分半徑OC,垂足為D.若點(diǎn)P是⊙O上異于點(diǎn)A,B的任意一點(diǎn),則∠APB=

A.30°60°B.60°150°C.30°150°D.60°120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,ACBC2,在以AB的中點(diǎn)O為坐標(biāo)原點(diǎn),AB所在直線為x軸建立的平面直角線坐標(biāo)系中,將△ABC繞點(diǎn)B順時針旋轉(zhuǎn),使點(diǎn)A旋轉(zhuǎn)至y軸正半軸上的A′處,則圖中陰影部分面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線與x軸的兩個交點(diǎn)及其頂點(diǎn)構(gòu)成等邊三角形,則稱該拋物線為等邊拋物線

1)判斷拋物線C1yx22x是否為等邊拋物線?如果是,求出它的對稱軸和頂點(diǎn)坐標(biāo);如果不是,說明理由.

2)若拋物線C2yax2+2x+c等邊拋物線,求ac的值;

3)對于等邊拋物線”C3yx2+bx+c,當(dāng)1xm時,二次函數(shù)C3的圖象落在一次函數(shù)yx圖象的下方,求m的最大值.

查看答案和解析>>

同步練習(xí)冊答案