【題目】北京某超市按月訂購(gòu)一種酸奶,每天的進(jìn)貨量相同.根據(jù)往年的銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).為了確定今年六月份的酸奶訂購(gòu)計(jì)劃,對(duì)前三年六月份的最高氣溫及該酸奶需求量數(shù)據(jù)進(jìn)行了整理、描述和分析,下面給出了部分信息.
a.酸奶每天需求量與當(dāng)天最高氣溫關(guān)系如表:
最高氣溫t(單位:℃) | 20≤t<25 | 25≤t<30 | 30≤t≤40 |
酸奶需求量(單位:瓶/天) | 300 | 400 | 600 |
b.2017年6月最高氣溫?cái)?shù)據(jù)的頻數(shù)分布統(tǒng)計(jì)表如表(不完整):
2017年6月最高氣溫?cái)?shù)據(jù)的頻數(shù)分布表:
分組 | 頻數(shù) | 頻率 |
20≤t<25 | 3 | |
25≤t<30 | m | 0.20 |
30≤t<35 | 14 | |
35≤t≤40 | 0.23 | |
合計(jì) | 30 | 1.00 |
c.2018年6月最高氣溫?cái)?shù)據(jù)的頻數(shù)分布直方圖如圖:
d.2019年6月最高氣溫?cái)?shù)據(jù)如下(未按日期順序):
25 26 28 29 29 30 31 31 31 32 32 32 32 32 32
33 33 33 33 33 34 34 34 35 35 35 35 36 36 36
根據(jù)以上信息,回答下列問題:
(1)m的值為 ;
(2)2019年6月最高氣溫?cái)?shù)據(jù)的眾數(shù)為 ,中位數(shù)為 ;
(3
(4)已知該酸奶進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.
①2019年6月這種酸奶每天的進(jìn)貨量為500瓶,則此月這種酸奶的利潤(rùn)為 元;
②根據(jù)以上信息,預(yù)估2020年6月這種酸奶訂購(gòu)的進(jìn)貨量不合理的為 .
A.550瓶/天
B.600瓶/天
C.380瓶/天
【答案】(1)6;(2)32,32.5;(3);(4)①28000,②C
【解析】
(1)估計(jì)頻數(shù)=總數(shù)×頻率即可得到結(jié)論;
(2)估計(jì)眾數(shù)和中位數(shù)的定義即可得到結(jié)論;
(3)估計(jì)概率公式計(jì)算即可;
(4)根據(jù)題意列式計(jì)算即可得到結(jié)論.
解:(1)m=30×0.20=6;
(2)2019年6月最高氣溫?cái)?shù)據(jù)的眾數(shù)為32,中位數(shù)為=32.5;
(3)三年這種酸奶一天的需求量為600瓶的天數(shù)為21+26+25=72,
估計(jì)六月份這種酸奶一天的需求量為600瓶的概率為=;
(4)①400×(6﹣4)×5+(500﹣400)×(2﹣4)×5+500×(6﹣4)×25=28000;
②∵以上三年6月最高氣溫低于25的天數(shù)一共有3+1=4天,
∴有86天酸奶每天需求量大于400瓶,
故預(yù)估2020年6月這種酸奶訂購(gòu)的進(jìn)貨量不合理的為C,
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩隊(duì)參加了“端午情,龍舟韻”賽龍舟比賽,兩隊(duì)在比賽時(shí)的路程s(米)與時(shí)間t(秒)之間的函數(shù)圖象如圖所示,根據(jù)圖象有以下四個(gè)判斷:
①乙隊(duì)率先到達(dá)終點(diǎn);
②甲隊(duì)比乙隊(duì)多走了126米;
③在47.8秒時(shí),兩隊(duì)所走路程相等;
④從出發(fā)到13.7秒的時(shí)間段內(nèi),甲隊(duì)的速度比乙隊(duì)的慢.
所有正確判斷的序號(hào)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:為等邊三角形.
(1)求作:的外接圓.(不寫作法,保留作圖痕跡)
(2)射線交于點(diǎn),交于點(diǎn),過作的切線,與的延長(zhǎng)線交于點(diǎn).
①根據(jù)題意,將(1)中圖形補(bǔ)全;
②求證:;
③若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,存在拋物線以及兩點(diǎn).
(1)求該拋物線的頂點(diǎn)坐標(biāo);(用含的代數(shù)式表示)
(2)若該拋物線經(jīng)過點(diǎn),求此拋物線的表達(dá)式;
(3)若該拋物線與線段有公共點(diǎn),結(jié)合圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,函數(shù)y1=x(x<m)的圖象與函數(shù)y2=x2(x≥m)的圖象組成圖形G.對(duì)于任意實(shí)數(shù)n,過點(diǎn)P(0,n)且與x軸平行的直線總與圖形G有公共點(diǎn),寫出一個(gè)滿足條件的實(shí)數(shù)m的值為_____(寫出一個(gè)即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】眾志成城,抗擊疫情,救助重災(zāi)區(qū).某校某小組7名同學(xué)積極捐出自己的零花錢支援災(zāi)區(qū),他們捐款的數(shù)額分別是(單位:元):100,45,100,40,100,60,155.下面有四個(gè)推斷:
①這7名同學(xué)所捐的零花錢的平均數(shù)是150;
②這7名同學(xué)所捐的零花錢的中位數(shù)是100;
③這7名同學(xué)所捐的零花錢的眾數(shù)是100;
④由這7名同學(xué)所捐的零花錢的中位數(shù)是100,可以推斷該校全體同學(xué)所捐的零花錢的中位數(shù)也一定是100.
所有合理推斷的序號(hào)是( )
A.①③B.②③C.②④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=x2﹣2mx+m﹣4與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,﹣3).
(1)求m的值;
(2)若一次函數(shù)y=kx+5(k≠0)的圖象經(jīng)過點(diǎn)A,求k的值;
(3)將二次函數(shù)的圖象在點(diǎn)B,C間的部分(含點(diǎn)B和點(diǎn)C)向左平移n(n>0)個(gè)單位后得到的圖象記為G,同時(shí)將(2)中得到的直線y=kx+5(k≠0)向上平移n個(gè)單位,當(dāng)平移后的直線與圖象G有公共點(diǎn)時(shí),請(qǐng)結(jié)合圖象直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果四邊形有一組對(duì)邊平行,且另一組對(duì)邊不平行,那么稱這樣的四邊形為梯形,若梯形中有一個(gè)角是直角,則稱其為直角梯形.下面四個(gè)結(jié)論中:
①存在無數(shù)個(gè)直角梯形,其四個(gè)頂點(diǎn)分別在同一個(gè)正方形的四條邊上;
②存在無數(shù)個(gè)直角梯形,其四個(gè)頂點(diǎn)在同一條拋物線上;
③存在無數(shù)個(gè)直角梯形,其四個(gè)頂點(diǎn)在同一個(gè)反比例函數(shù)的圖象上;
④至少存在一個(gè)直角梯形,其四個(gè)頂點(diǎn)在同一個(gè)圓上.
所有正確結(jié)論的序號(hào)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l:y=x+b與x軸交于點(diǎn)A(﹣2,0),與y軸交于點(diǎn)B.雙曲線y與直線l交于P,Q兩點(diǎn),其中點(diǎn)P的縱坐標(biāo)大于點(diǎn)Q的縱坐標(biāo)
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)點(diǎn)P的橫坐標(biāo)為2時(shí),求k的值;
(3)連接PO,記△POB的面積為S.若,結(jié)合函數(shù)圖象,直接寫出k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com