(2009•綦江縣)請同學們動手用圓規(guī)和直尺完成下面作圖:
(1)已知∠AOB,求作∠AOB的平分線OP;
(2)已知線段CD,求作CD的垂直平分線EF.
(不要求寫作法,不要求證明,保留作圖痕跡即可)

【答案】分析:(1)①以點O為圓心,以任意長為半徑畫弧,兩弧交角AOB兩邊于點M,N;
②分別以點M,N為圓心,以大于MN的長度為半徑畫弧,兩弧交于點P;
③作射線OP.
(2)已知線段CD,分別以C、D為圓心,以大于長為半徑,在線段兩側分別作弧,兩弧交于E、F兩點,過兩點作一條直線,則為線段CD的垂直平分線.
解答:解:

點評:本題利用常見的基本作圖即可解決問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學模擬試卷34(義蓬二中 戎曉軍)(解析版) 題型:解答題

(2009•綦江縣)如圖,已知拋物線y=a(x-1)2+3(a≠0)經(jīng)過點A(-2,0),拋物線的頂點為D,過O作射線OM∥AD.過頂點平行于x軸的直線交射線OM于點C,B在x軸正半軸上,連接BC.
(1)求該拋物線的解析式;
(2)若動點P從點O出發(fā),以每秒1個長度單位的速度沿射線OM運動,設點P運動的時間為t(s).問當t為何值時,四邊形DAOP分別為平行四邊形,直角梯形,等腰梯形?
(3)若OC=OB,動點P和動點Q分別從點O和點B同時出發(fā),分別以每秒1個長度單位和2個長度單位的速度沿OC和BO運動,當其中一個點停止運動時另一個點也隨之停止運動.設它們的運動的時間為t(s),連接PQ,當t為何值時,四邊形BCPQ的面積最小?并求出最小值及此時PQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年浙江省杭州市中考數(shù)學模擬試卷(31)(解析版) 題型:解答題

(2009•綦江縣)如圖,已知拋物線y=a(x-1)2+3(a≠0)經(jīng)過點A(-2,0),拋物線的頂點為D,過O作射線OM∥AD.過頂點平行于x軸的直線交射線OM于點C,B在x軸正半軸上,連接BC.
(1)求該拋物線的解析式;
(2)若動點P從點O出發(fā),以每秒1個長度單位的速度沿射線OM運動,設點P運動的時間為t(s).問當t為何值時,四邊形DAOP分別為平行四邊形,直角梯形,等腰梯形?
(3)若OC=OB,動點P和動點Q分別從點O和點B同時出發(fā),分別以每秒1個長度單位和2個長度單位的速度沿OC和BO運動,當其中一個點停止運動時另一個點也隨之停止運動.設它們的運動的時間為t(s),連接PQ,當t為何值時,四邊形BCPQ的面積最。坎⑶蟪鲎钚≈导按藭rPQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學模擬試卷48(新灣初中 洪凱)(解析版) 題型:解答題

(2009•綦江縣)如圖,已知拋物線y=a(x-1)2+3(a≠0)經(jīng)過點A(-2,0),拋物線的頂點為D,過O作射線OM∥AD.過頂點平行于x軸的直線交射線OM于點C,B在x軸正半軸上,連接BC.
(1)求該拋物線的解析式;
(2)若動點P從點O出發(fā),以每秒1個長度單位的速度沿射線OM運動,設點P運動的時間為t(s).問當t為何值時,四邊形DAOP分別為平行四邊形,直角梯形,等腰梯形?
(3)若OC=OB,動點P和動點Q分別從點O和點B同時出發(fā),分別以每秒1個長度單位和2個長度單位的速度沿OC和BO運動,當其中一個點停止運動時另一個點也隨之停止運動.設它們的運動的時間為t(s),連接PQ,當t為何值時,四邊形BCPQ的面積最?并求出最小值及此時PQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年新人教版中考數(shù)學模擬試卷(10)(解析版) 題型:解答題

(2009•綦江縣)如圖,已知拋物線y=a(x-1)2+3(a≠0)經(jīng)過點A(-2,0),拋物線的頂點為D,過O作射線OM∥AD.過頂點平行于x軸的直線交射線OM于點C,B在x軸正半軸上,連接BC.
(1)求該拋物線的解析式;
(2)若動點P從點O出發(fā),以每秒1個長度單位的速度沿射線OM運動,設點P運動的時間為t(s).問當t為何值時,四邊形DAOP分別為平行四邊形,直角梯形,等腰梯形?
(3)若OC=OB,動點P和動點Q分別從點O和點B同時出發(fā),分別以每秒1個長度單位和2個長度單位的速度沿OC和BO運動,當其中一個點停止運動時另一個點也隨之停止運動.設它們的運動的時間為t(s),連接PQ,當t為何值時,四邊形BCPQ的面積最?并求出最小值及此時PQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省黃岡市浠水縣余堰中學九年級數(shù)學月考試卷(二)(解析版) 題型:解答題

(2009•綦江縣)如圖,已知拋物線y=a(x-1)2+3(a≠0)經(jīng)過點A(-2,0),拋物線的頂點為D,過O作射線OM∥AD.過頂點平行于x軸的直線交射線OM于點C,B在x軸正半軸上,連接BC.
(1)求該拋物線的解析式;
(2)若動點P從點O出發(fā),以每秒1個長度單位的速度沿射線OM運動,設點P運動的時間為t(s).問當t為何值時,四邊形DAOP分別為平行四邊形,直角梯形,等腰梯形?
(3)若OC=OB,動點P和動點Q分別從點O和點B同時出發(fā),分別以每秒1個長度單位和2個長度單位的速度沿OC和BO運動,當其中一個點停止運動時另一個點也隨之停止運動.設它們的運動的時間為t(s),連接PQ,當t為何值時,四邊形BCPQ的面積最。坎⑶蟪鲎钚≈导按藭rPQ的長.

查看答案和解析>>

同步練習冊答案