如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),以點(diǎn)A(0,-3)為圓心,5為半徑作圓A,交x軸于B、C兩點(diǎn),交y軸于D、E兩點(diǎn).
(1)如果一個(gè)二次函數(shù)圖象經(jīng)過(guò)B、C、D三點(diǎn),求這個(gè)二次函數(shù)的解析式;
(2)設(shè)點(diǎn)P的坐標(biāo)為(m,0)(m>5),過(guò)點(diǎn)P作PQ⊥x軸交(1)中的拋物線(xiàn)于點(diǎn)Q,當(dāng)以O(shè)、C、D為頂點(diǎn)的三角形與△PCQ相似時(shí),求點(diǎn)P的坐標(biāo).
分析:(1)利用垂徑定理求得線(xiàn)段OB和OC的長(zhǎng),從而求得B、C兩點(diǎn)的坐標(biāo),利用待定系數(shù)法求得二次函數(shù)的解析式即可;
(2)作出圖形利用相似三角形的對(duì)應(yīng)邊成比例列出有關(guān)未知數(shù)m的方程求解即可.
解答:解:(1)連接AC,
∵以點(diǎn)A(0,-3)為圓心,5為半徑作圓A,交x軸于B、C兩點(diǎn),交y軸于D、E兩點(diǎn).
∴AC=5、AO=3,
∴由勾股定理得:OC=OB=4
∴點(diǎn)B的坐標(biāo)為(-4,0),點(diǎn)C的坐標(biāo)為(4,0),點(diǎn)D的坐標(biāo)為(0,2).
∵對(duì)稱(chēng)軸為y軸,
∴設(shè)二次函數(shù)的解析式為y=ax2+c
16a+c=0
c=2

解得:
a=-
1
8
c=2

∴經(jīng)過(guò)B、C、D三點(diǎn)的二次函數(shù)的解析式為y=-
1
8
x2+2

(2)∵P的坐標(biāo)為(m,0)(m>5),
∴Q點(diǎn)的坐標(biāo)為(m,-
1
8
m2+2)
∴PC=m-4 PQ=
1
8
m2-2,
∵以O(shè)、C、D為頂點(diǎn)的三角形與△PCQ相似,
①當(dāng)△ODC∽△PCQ時(shí),
PC
OD
=
PQ
OC

即:
m-4
2
=
1
8
m2-2
4

解得:m=12或m=4(因m>5,故舍去)
②當(dāng)△OCD∽△PCQ時(shí),
PC
OC
=
PQ
OD

即:
m-2
4
=
1
8
m2-2
2

解得:m=12或4(因m>5,故舍去)
∴P點(diǎn)的坐標(biāo)為:(12,0).
點(diǎn)評(píng):本題主要考查了二次函數(shù)解析式的確定及垂徑定理的應(yīng)用.主要考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線(xiàn)段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線(xiàn)CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線(xiàn)CP把梯形OABC的面積分成相等的兩部分時(shí),求直線(xiàn)CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案