【題目】如圖,△ABC的面積為.第一次操作:分別延長(zhǎng),,至點(diǎn),,使,,順次連接,,,得到△.第二次操作:分別延長(zhǎng),,至點(diǎn),,,使,,,順次連接,,得到△,…按此規(guī)律,要使得到的三角形的面積超過(guò)2020,最少經(jīng)過(guò)多少次操作( 。

A.B.C.D.

【答案】A

【解析】

先根據(jù)已知條件求出△A1B1C1及△A2B2C2的面積,再根據(jù)兩三角形的倍數(shù)關(guān)系求解即可.

解:連接A1C,如圖,

ABA1B,

∴△ABC與△A1BC的面積相等,

∵△ABC面積為1,

1

BB12BC,

2,

同理可得,2,2,

2+2+2+17

同理可得:△A2B2C2的面積=7×△A1B1C1的面積=49,

第三次操作后的面積為7×49343

第四次操作后的面積為7×3432401

故按此規(guī)律,要使得到的三角形的面積超過(guò)2020,最少經(jīng)過(guò)4次操作.

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度,△ABC的頂點(diǎn)都在正方形網(wǎng)格的格點(diǎn)(網(wǎng)格線的交點(diǎn))上.

1)畫(huà)出△ABC先向右平移5個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度所得的△A1B1C1

2)畫(huà)出△ABC的中線AD;

3)畫(huà)出△ABC的高CE所在直線,標(biāo)出垂足E

4)在(1)的條件下,線段AA1CC1的關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=9,把矩形ABCD沿對(duì)角線BD折疊,使點(diǎn)C與點(diǎn)F重合,BF交AD于點(diǎn)M,過(guò)點(diǎn)C作CE⊥BF于點(diǎn)E,交AD于點(diǎn)G,則MG的長(zhǎng)=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖中,AB為⊙O的直徑,AB=4,P為AB上一點(diǎn),過(guò)點(diǎn)P作⊙O的弦CD,設(shè)∠BCD=m∠ACD.

(1)已知 ,求m的值,及∠BCD、∠ACD的度數(shù)各是多少?
(2)在(1)的條件下,且 ,求弦CD的長(zhǎng);
(3)當(dāng) 時(shí),是否存在正實(shí)數(shù)m,使弦CD最短?如果存在,求出m的值,如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC中,∠ACB為銳角,點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.解答下列問(wèn)題:

(1)如果AB=AC,∠BAC=90°
①當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖2,線段CF、BD之間的位置關(guān)系為 , 數(shù)量關(guān)系為
②當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖3,①中的結(jié)論是否仍然成立,為什么?
(2)如圖4,如果AB≠AC,∠BAC≠90°,點(diǎn)D在線段BC上運(yùn)動(dòng).且AC=4 ,BC=3,∠BCA=45°,正方形ADEF的邊DE與線段CF相交于點(diǎn)P,求線段CP長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD平分BAC,BDAD,垂足為D,連接CD,若三角形△ABC內(nèi)有一點(diǎn)P,則點(diǎn)P落在△ADC內(nèi)(包括邊界的陰影部分)的概率為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OACBAD都是等腰直角三角形,∠ACO=ADB=90°,反比例函數(shù)y=在第一象限的圖象經(jīng)過(guò)點(diǎn)B,則OACBAD的面積之差SOACSBAD為( 。

A. 36 B. 12 C. 6 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,正方形ABCD的邊長(zhǎng)為2,點(diǎn)M是BC的中點(diǎn),P是線段MC上的一個(gè)動(dòng)點(diǎn)(不與M、C重合),以AB為直徑作⊙O,過(guò)點(diǎn)P作⊙O的切線,交AD于點(diǎn)F,切點(diǎn)為E.

(1)求證:OF∥BE;
(2)設(shè)BP=x,AF=y,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出自變量x的取值范圍;
(3)延長(zhǎng)DC、FP交于點(diǎn)G,連接OE并延長(zhǎng)交直線DC于H(圖2),問(wèn)是否存在點(diǎn)P,使△EFO∽△EHG(E、F、O與E、H、G為對(duì)應(yīng)點(diǎn))?如果存在,試求(2)中x和y的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A2,1),B2,4).

1)若直線ly=x+bAB有一個(gè)交點(diǎn).

b的取值范圍為_______________;

2)若直線ly=kxAB有一個(gè)交點(diǎn).

k的取值范圍為_______________

查看答案和解析>>

同步練習(xí)冊(cè)答案