【題目】復(fù)習(xí)課中,教師給出關(guān)于x的函數(shù)y=2kx2-(4k+1)x-k+1(k是實數(shù)).教師:請獨立思考,并把探索發(fā)現(xiàn)的與該函數(shù)有關(guān)的結(jié)論(性質(zhì))寫到黑板上.學(xué)生思考后,黑板上出現(xiàn)了一些結(jié)論,教師作為活動一員,又補充一些結(jié)論,并從中選出如下四條:
①存在函數(shù),其圖象經(jīng)過(1,0)點;
②存在函數(shù),該函數(shù)的函數(shù)值y始終隨x的增大而減;
③函數(shù)圖象有可能經(jīng)過兩個象限;
④若函數(shù)有最大值,則最大值必為正數(shù),若函數(shù)有最小值,則最小值必為負數(shù).
其中正確的結(jié)論有 .
【答案】①②④
【解析】
①將(1,0)點代入函數(shù),解出k的值即可作出判斷;
②首先考慮,函數(shù)為一次函數(shù)的情況,從而可判斷為假;
③根據(jù)②即可作出判斷;
④當(dāng)k=0時,函數(shù)為一次函數(shù),無最大之和最小值,當(dāng)k≠0時,函數(shù)為拋物線,求出頂點的縱坐標(biāo)表達式,即可作出判斷.
①將(1,0)代入可得:2k-(4k+1)-k+1=0,解得:k=0,此選項正確.
②當(dāng)k=0時,y=-x+1,該函數(shù)的函數(shù)值y始終隨x的增大而減小;此選項正確;
③y=-x+1,經(jīng)過3個象限,此選項錯誤;
④當(dāng)k=0時,函數(shù)無最大、最小值;k≠0時,y最=-,當(dāng)k>0時,有最小值,最小值為負;當(dāng)k<0時,有最大值,最大值為正;此選項正確.
正確的是①②④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一種折疊式晾衣架.晾衣時,該晾衣架左右晾衣臂張開后示意圖如圖2所示,兩支腳OC=OD=10分米,展開角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.當(dāng)∠AOC=90°時,點A離地面的距離AM為_______分米;當(dāng)OB從水平狀態(tài)旋轉(zhuǎn)到OB′(在CO延長線上)時,點E繞點F隨之旋轉(zhuǎn)至OB′上的點E′處,則B′E′﹣BE為_________分米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位宿舍用電規(guī)定如下:如果每戶一個月的用電量不超過度,那么這個月只需要交10元電費,若超過度,則這個月除了要交10元電費外,超過的部分還要按元交費,下表是某戶5月份和6月份的用電和交費情況,求的值.
月份 | 用電量(度) | 交電費總數(shù)(元) |
5 | 80 | 25 |
6 | 45 | 10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,頂點A(1,3)、B(1,1)、C(3,1).規(guī)定“把正方形ABCD先沿x軸翻折,再向左平移1個單位”為一次變換,如此這樣,連續(xù)經(jīng)過2014次變換后,正方形ABCD的對角線交點M的坐標(biāo)變?yōu)椋?)
A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.
(1)如圖,點P是四邊形ABCD內(nèi)一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F,G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;
(2)若改變(1)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀(不必證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)綜合實踐活動中,小明計劃測量城門大樓的高度,在點B處測得樓頂A的仰角為22°,他正對著城樓前進21米到達C處,再登上3米高的樓臺D處,并測得此時樓頂A的仰角為45°.
(1)求城門大樓的高度;
(2)每逢重大節(jié)日,城門大樓管理處都要在A,B之間拉上繩子,并在繩子上掛一些彩旗,請你求出A,B之間所掛彩旗的長度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暑假到了,即將迎來手機市場的銷售旺季.某商場銷售甲、乙兩種品牌的智能手機,這兩種手機的進價和售價如下表所示:
甲 | 乙 | |
進價(元/部) | 4000 | 2500 |
售價(元/部) | 4300 | 3000 |
該商場計劃投入15.5萬元資金,全部用于購進兩種手機若干部,期望全部銷售后可獲毛利潤不低于2萬元.(毛利潤=(售價﹣進價)×銷售量)
(1)若商場要想盡可能多的購進甲種手機,應(yīng)該安排怎樣的進貨方案購進甲乙兩種手機?
(2)通過市場調(diào)研,該商場決定在甲種手機購進最多的方案上,減少甲種手機的購進數(shù)量,增加乙種手機的購進數(shù)量.已知乙種手機增加的數(shù)量是甲種手機減少的數(shù)量的2倍,而且用于購進這兩種手機的總資金不超過16萬元,該商場怎樣進貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩個一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中ac≠0,a≠c.下列四個結(jié)論中:正確的個數(shù)有( 。
①如果方程M有兩個相等的實數(shù)根,那么方程N也有兩個相等的實數(shù)根;
②如果ac<0,方程M、N都有兩個不相等的實數(shù)根;
③如果2是方程M的一個根,那么是方程N的一個根;
④如果方程M和方程N有一個相同的根,那么這個根必是x=1.
A.4個B.1個C.2個D.3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點,與y軸交于點C,且OA=2,OC=3.
(1)求拋物線的解析式;
(2)點D(2,2)是拋物線上一點,那么在拋物線的對稱軸上,是否存在一點P,使得△BDP的周長最小,若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
(3)連接AD并延長,過拋物線上一點Q(Q不與A重合)作QN⊥x軸,垂足為N,與射線交于點M,使得QM=3MN,若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com