【題目】如圖所示,小正方形方格的邊長為 1,

按要求作圖,并根據(jù)要求解答問題:

1)作圖:連接圖中小正方形方格的某兩個頂點,分別得到三條線段、、,使得、、;

2)判斷(1)中的三條線段、能否構(gòu)成三角形,并說明理由.

【答案】1)見解析;(2)能構(gòu)成三角形,理由見解析.

【解析】

1)利用網(wǎng)格借助勾股定理得出符合題意的圖形;

2)根據(jù)網(wǎng)格結(jié)構(gòu)的特點,過點E、F分別作出與ABCD相等的線段即可得出結(jié)論.

解:(1)∵= ,

=

= ,

是直角邊長為1,2的直角三角形的斜邊;

是直角邊長為13的直角三角形的斜邊;

是直角邊長為2,3的直角三角形的斜邊.

如圖所示:

2)能構(gòu)成三角形,理由如圖:

EFG中,EG=FG=,

∴(1)中的三條線段、能構(gòu)成三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB 是⊙M 的直徑,BC 是⊙M 的切線,切點為 B,C BC 上(除 B 點外)的任意一點,連接 CM 交⊙M 于點 G,過點 C DCBC BG 延長線于點 D,連接 AG 并延長交 BC 于點 E.

(1)求證:ABEBCD;

(2)若 MB=BE=1,求 CD 的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司計劃購買A,B兩種型號的電腦,已知購買一臺A型電腦需0.6萬元,購買一臺B型電腦需0.4萬元,該公司準備投入資金y萬元,全部用于購進35臺這兩種型號的電腦,設(shè)購進A型電腦x臺.

(1)求y關(guān)于x的函數(shù)解析式;

(2)若購進B型電腦的數(shù)量不超過A型電腦數(shù)量的2倍,則該公司至少需要投入資金多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,延長線上的一點,點的中點。

1)實踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標明相應(yīng)字母(保留作圖痕跡,不寫作法)。

①作的平分線. ②連接并延長交于點.

2)猜想與證明:試猜想有怎樣的關(guān)系,并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠1+∠2=180°,∠DAE=∠BCFDA平分∠BDF.

(1)AEFC會平行嗎?說明理由.

(2)ADBC的位置關(guān)系如何?為什么?

(3)求證:BC平分∠DBE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示的是嘉淇爸爸給嘉淇出的一道題,如圖2所示的是嘉淇對該題的解答.她所寫的結(jié)論中,正確的個數(shù)是( )

A.6B.5C.4D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為(1,0)(3,0),現(xiàn)同時將點A,B分別向上平移2個單位長度,再向右平移1個單位長度,分別得到點A,B的對應(yīng)點C,D.連接AC,BD.

(1)寫出點C,D的坐標及四邊形ABDC的面積.

(2)y軸上是否存在一點P,連接PAPB,使S三角形PABS四邊形ABDC?若存在,求出點P的坐標,若不存在,試說明理由;

(3)Q是線段BD上的動點,連接QCQO,當點QBD上移動時(不與B,D重合),給出下列結(jié)論:①的值不變;②的值不變,其中有且只有一個正確,請你找出這個結(jié)論并求值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,鐵路MN和公路PQ在點O處交匯,QON=30°,公路PQA處距O240米,如果火車行駛時,周圍200米以內(nèi)會受到噪音的影響,那么火車在鐵路MN上沿ON方向以72千米/時的速度行駛時,求A處受噪音影響的時間。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題10) (湖南湘西24,10)如圖,已知矩形ABCD的兩條對角線相交于O,∠ACB=30°,AB=2.

(1)AC的長.

(2)∠AOB的度數(shù).

(3)OBOC為鄰邊作菱形OBEC,求菱形OBEC的面積.

查看答案和解析>>

同步練習冊答案