在1~22這22個(gè)正整數(shù)中,以20為分母,其余的數(shù)分別為分子,得到若干個(gè)分?jǐn)?shù),從中抽取一個(gè)分?jǐn)?shù),恰好為最簡(jiǎn)分?jǐn)?shù)(分子、分母互為質(zhì)數(shù))的概率是________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、(1)李剛同學(xué)在計(jì)算122和892時(shí),借助計(jì)算器探究“兩位數(shù)的平方”有否簡(jiǎn)捷的計(jì)算方法.他經(jīng)過(guò)探索并用計(jì)算器驗(yàn)證,再用數(shù)學(xué)知識(shí)解釋,得出“兩位數(shù)的平方”可用“豎式計(jì)算法”進(jìn)行計(jì)算,
如:122=144.其中第一行的“01”和“04”分別是十位數(shù)和個(gè)位數(shù)的平方,各占兩個(gè)位置,其結(jié)果不夠兩位的就在“十位”位置上放上“0”,再把它們并排排列;第二行的“04”為十位數(shù)與個(gè)位數(shù)積的2倍,占兩個(gè)位置,其結(jié)果不夠兩位的就在“十位”位置上放上“0”,再把它們按上面的豎式相加就得到了122=144,
再如892=7921.其中第一行的“64”和“81”分別是十位數(shù)和個(gè)位數(shù)的平方,各占兩個(gè)位置,再把它們并排排列;第二行的“144”為十位數(shù)與個(gè)位數(shù)積的2倍,再把它們按上面的豎式相加就得到了892=7921.
①請(qǐng)你用上述方法計(jì)算752和682(寫(xiě)出“豎式計(jì)算”過(guò)程);
②請(qǐng)你用數(shù)學(xué)知識(shí)解釋這種“兩位數(shù)平方的豎式計(jì)算法”合理性.
(2)閱讀以下內(nèi)容:
(x-1)(x+1)=x2-1;
(x-1)(x2+x+1)=x3-1;
(x-1)(x3+x2+x+1)=x4-1;
①根據(jù)上面的規(guī)律,得(x-1)(xn-1+xn-2+xn-3+…+x+1)=
xn-l
(n為正整數(shù));
②根據(jù)這一規(guī)律,計(jì)算:1+2+22+23+24+…+22008+22009=
22010-l
( n為正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

生活中的數(shù)學(xué)
(1)小明同學(xué)在某月的日歷上圈出2×2個(gè)數(shù)(如圖1),正方形方框內(nèi)的4個(gè)數(shù)的和是28,那么這4個(gè)數(shù)是
3,4,10,11
3,4,10,11

(2)小麗同學(xué)在日歷上圈出5個(gè)數(shù),呈十字框型(如圖2),他們的和是65,則正中間一個(gè)數(shù)是
13
13

(3)某月有5個(gè)星期日,這5個(gè)星期日的日期之和為80,則這個(gè)月中第一星期日的日期是
2
2
號(hào).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

生活中的數(shù)學(xué)
(1)小明同學(xué)在某月的日歷上圈出2×2個(gè)數(shù)(如圖),正方形方框內(nèi)的4個(gè)數(shù)的和是28,那么這4個(gè)數(shù)是
3、4、10、11
3、4、10、11
;
(2)小麗同學(xué)在日歷上圈出5個(gè)數(shù),呈十字框型(如圖),他們的和是65,則正中間一個(gè)數(shù)是
13
13
;
(3)某月有5個(gè)星期日,這5個(gè)星期日的日期之和為80,則這個(gè)月中第一星期日的日期是
2
2
號(hào);
(4)有一個(gè)數(shù)列每行8個(gè)數(shù)成一定規(guī)律排列如圖:
①圖中方框內(nèi)的9個(gè)數(shù)的和是
252
252

②小剛同學(xué)在這個(gè)數(shù)列上圈了一個(gè)斜框(如圖),圈出的9個(gè)數(shù)的和為522,求正中間的一個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)李剛同學(xué)在計(jì)算122和892時(shí),借助計(jì)算器探究“兩位數(shù)的平方”有否簡(jiǎn)捷的計(jì)算方法.他經(jīng)過(guò)探索并用計(jì)算器驗(yàn)證,再用數(shù)學(xué)知識(shí)解釋,得出“兩位數(shù)的平方”可用“豎式計(jì)算法”進(jìn)行計(jì)算,
如:122=144.其中第一行的“01”和“04”分別是十位數(shù)和個(gè)位數(shù)的平方,各占兩個(gè)位置,其結(jié)果不夠兩位的就在“十位”位置上放上“0”,再把它們并排排列;第二行的“04”為十位數(shù)與個(gè)位數(shù)積的2倍,占兩個(gè)位置,其結(jié)果不夠兩位的就在“十位”位置上放上“0”,再把它們按上面的豎式相加就得到了122=144,
再如892=7921.其中第一行的“64”和“81”分別是十位數(shù)和個(gè)位數(shù)的平方,各占兩個(gè)位置,再把它們并排排列;第二行的“144”為十位數(shù)與個(gè)位數(shù)積的2倍,再把它們按上面的豎式相加就得到了892=7921.
①請(qǐng)你用上述方法計(jì)算752和682(寫(xiě)出“豎式計(jì)算”過(guò)程);
②請(qǐng)你用數(shù)學(xué)知識(shí)解釋這種“兩位數(shù)平方的豎式計(jì)算法”合理性.
(2)閱讀以下內(nèi)容:
(x-1)(x+1)=x2-1;
(x-1)(x2+x+1)=x3-1;
(x-1)(x3+x2+x+1)=x4-1;
①根據(jù)上面的規(guī)律,得(x-1)(xn-1+xn-2+xn-3+…+x+1)=______(n為正整數(shù));
②根據(jù)這一規(guī)律,計(jì)算:1+2+22+23+24+…+22008+22009=______( n為正整數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案