【題目】某市為了構(gòu)建城市立體道路網(wǎng)絡(luò),決定修建一條輕軌鐵路,為使工程提前半年完成,需要將工作效率提高25%,原計劃完成這項工程需要多少個月?

【答案】原計劃完成這項工程需要30個月

【解析】試題設(shè)原計劃完成這項工程需要x個月,由等量關(guān)系工程提前6個月完成,需將原定的工作效率提高25%”列出方程,求解即可

試題解析:設(shè)原計劃完成這項工程需要x個月,則有

解得x=30

經(jīng)檢驗x=30是原方程的根

答:原計劃完成這項工程需要30個月

考點:分式方程的應(yīng)用

型】解答
結(jié)束】
24

【題目】如圖,一次函數(shù)分別交y軸、x軸于CD兩點,與反比例函數(shù)y=x>0)的圖象交于Am,8),B(4,n)兩點.

(1)求反比例函數(shù)的解析式;

(2)根據(jù)圖象直接寫出x的取值范圍;

(3)求的面積.

【答案】(1)y= ;(2) ;(3)15.

【解析】(1)B(4,n兩點分別代入可求出n的值,確定B點坐標為B(4,2),后利用待定系數(shù)法求反比例函數(shù)的解析式;

(2)觀察函數(shù)圖象得到當,反比例函數(shù)的圖象在一次函數(shù)圖象上方.

(3)求得直線與坐標軸軸的交點坐標,根據(jù)三角形面積公式即可求得.

1)將代入,

得反比例函數(shù)的關(guān)系式是.

(2) ,

(3)點的坐標是(0,10),點的坐標是(5,0),

分別過點A、B兩點作軸、軸的垂線段,

.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】A(1,4)和點B(5,1)在平面直角坐標系中的位置如圖所示:

(1)點A1、B1分別為點A、B關(guān)于y軸的對稱點,請畫出四邊形AA1B1B,并寫出A1、B1的坐標;

(2)在(1)的條件下,畫一條過四邊形AA1B1B的一個頂點的線段,將四邊形AA1B1B分成兩個圖形,并且使分得的圖形中的一個是軸對稱圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D是△ABC內(nèi)一點,BDCDAD=6,BD=4,CD=3,E、F、G、H分別是AB、AC、CD、BD的中點,則四邊形EFGH的周長是( )

A. 7 B. 8 C. 11 D. 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市舉辦“體彩杯”中學生籃球賽,初中男子組有市直學校的A、B、C三個隊和縣區(qū)學校的D,E,F(xiàn),G,H五個隊,如果從A,B,D,E四個隊與C,F(xiàn),G,H四個隊中個抽取一個隊進行首場比賽,那么首場比賽出場的兩個隊都是縣區(qū)學校隊的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上有A.B、C、D、E五個整數(shù)點(即各點均表示整數(shù)),且AB=2BC=3CD=4DE,若A.E兩點表示的數(shù)的分別為 -13和12,那么,該數(shù)軸上上述五個點所表示的整數(shù)中,離線段AE的中點最近的整數(shù)是( )

A. -2 B. -1 C. 0 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探索發(fā)現(xiàn):;根據(jù)你發(fā)現(xiàn)的規(guī)律,回答下列問題

(1)    ,    ;

(2)利用你發(fā)現(xiàn)的規(guī)律計算:    

(3)靈活利用規(guī)律解方程:

【答案】(1) , ;(2) (3)100.

【解析】(1)利用分式的運算和題中的運算規(guī)律求解;

(2)利用前面的運算規(guī)律得到原式=,然后合并后通分即可;

(3)利用前面的運算規(guī)律方程化為 ,然后合并后解分式方程即可.

1), ;

(2)原式== =;

(3)

,

,

經(jīng)檢驗是原方程的解.

點睛:本題考查了分式的運算和解分式方程:熟練掌握解分式方程的步驟:①去分母;②求出整式方程的解;③檢驗;④得出結(jié)論.理解分式的計算規(guī)律:是解答本題的關(guān)鍵

型】解答
結(jié)束】
26

【題目】如圖,已知,A(0,6),B(-4.5,0),C(3,0),DB點關(guān)于AC的對稱點,反比例函數(shù)y= 的圖象經(jīng)過D點.

(1)點的坐標是    ;

(2)求此反比例函數(shù)的解析式;

(3)已知在y=的圖象(x>0)上一點Ny軸正半軸上一點M,且四邊形ABMN是平行四邊形,求M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,正方形ABCD中,E為BC上一點,過B作BG⊥AE于G,延長BG至點F使∠CFB=45°
(1)求證:AG=FG;
(2)如圖2延長FC、AE交于點M,連接DF、BM,若C為FM中點,BM=10,求FD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A、B、C的坐標分別為(﹣1,0),(5,0),(0,2).若點P從A點出發(fā),沿x軸正方向以每秒1個單位長度的速度向B點移動,連接PC并延長到點E,使CE=PC,將線段PE繞點P順時針旋轉(zhuǎn)90°得到線段PF,連接FB.若點P在移動的過程中,使△PBF成為直角三角形,則點F的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市水果批發(fā)部門欲將A市的一批水果運往本市銷售,有火車和汽車兩種運輸方式,運輸過程中的損耗均為200/時,其他主要參考數(shù)據(jù)如下:

運輸工具

途中平均速度

(千米/)

運費

(/千米)

裝卸費用

()

火車

100

15

2000

汽車

80

20

900

(1)如果選擇汽車的總費用比選擇火車的總費用多1100元,那么你知道本市與A市之間的路程是多少千米嗎?請你列方程解答;

(2)A市與某市之間的路程為s千米,且知道火車與汽車在路上耽誤的時間分別為2小時和3.1小時,要想將這批水果運往該市進行銷售,則當s為多少時,選擇火車和汽車運輸所需費用相同?

查看答案和解析>>

同步練習冊答案