如圖,在△ABC中,已知AB=BC=CA,AE=CD,AD與BE交于點(diǎn)P,BQ⊥AD于點(diǎn)Q,求證:BP=2PQ.

證明:∵AB=BC=CA,
∴△ABC為等邊三角形,
∴∠BAC=∠C=60°,
在△ABE和△CAD中
∴△ABE≌△CAD(SAS),
∴∠ABE=∠CAD,
∵∠BPQ=∠ABE+∠BAP,
∴∠BPQ=∠CAD+∠BAP=∠CAB=60°,
∵BQ⊥AD
∴∠BQP=90°,
∴∠PBQ=30°,
∴BP=2PQ.
分析:推出等邊三角形ABC,推出∠BAC=∠C=60°,證△ABE≌△CAD,推出∠ABE=∠CAD,求出∠BPQ=∠CAD+∠BAP=∠CAB=60°,求出∠PBQ=30°,根據(jù)含30度角的直角三角形性質(zhì)推出即可.
點(diǎn)評(píng):本題考查了等邊三角形的性質(zhì)和判定,含30度角的直角三角形性質(zhì),全等三角形的性質(zhì)和判定的應(yīng)用,關(guān)鍵是求出∠BPQ=60°和∠PBQ=30°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案