【題目】某貯水塔在工作期間,每小時(shí)的進(jìn)水量和出水量都是固定不變的.從凌晨4點(diǎn)到早8點(diǎn)只進(jìn)水不出水,8點(diǎn)到12點(diǎn)既進(jìn)水又出水,14點(diǎn)到次日凌晨只出水不進(jìn)水.下圖是某日水塔中貯水量y(立方米)與x(時(shí))的函數(shù)圖象.
(1)求每小時(shí)的進(jìn)水量;
(2)當(dāng)8≤x≤12時(shí),求y與x之間的函數(shù)關(guān)系式;
(3)從該日凌晨4點(diǎn)到次日凌晨,當(dāng)水塔中的貯水量不小于28立方米時(shí),直接寫出x的取值范圍.
【答案】(1)每小時(shí)的進(jìn)水量為5立方米;(2)當(dāng)8≤x≤12時(shí),y=3x+1;(3).
【解析】
(1)由4點(diǎn)到8點(diǎn)只進(jìn)水時(shí),水量從5立方米上升到25立方米即能求每小時(shí)進(jìn)水量;
(2)由圖象可得,8≤x≤12時(shí),對(duì)應(yīng)的函數(shù)圖象是線段,兩端點(diǎn)坐標(biāo)為(8,25)和(12,37),用待定系數(shù)法即可求函數(shù)關(guān)系式;
(3)由(2)的函數(shù)關(guān)系式即能求在8到12點(diǎn)時(shí),哪個(gè)時(shí)間開始貯水量不小于28立方米,且能求出每小時(shí)的出水量;14點(diǎn)后貯水量為37立方米開始每小時(shí)減2立方米,即能求等于28立方米的時(shí)刻
解:(1)∵凌晨4點(diǎn)到早8點(diǎn)只進(jìn)水,水量從5立方米上升到25立方米
∴(25﹣5)÷(8﹣4)=5(立方米/時(shí))
∴每小時(shí)的進(jìn)水量為5立方米.
(2)設(shè)函數(shù)y=kx+b經(jīng)過點(diǎn)(8,25),(12,37)
解得:∴當(dāng)8≤x≤12時(shí),y=3x+1
(3)∵8點(diǎn)到12點(diǎn)既進(jìn)水又出水時(shí),每小時(shí)水量上升3立方米
∴每小時(shí)出水量為:5﹣3=2(立方米)
當(dāng)8≤x≤12時(shí),3x+1≥28,解得:x≥9
當(dāng)x>14時(shí),37﹣2(x﹣14)≥28,解得:x≤
∴當(dāng)水塔中的貯水量不小于28立方米時(shí),x的取值范圍是9≤x≤
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊的邊長(zhǎng)為8,是中線上一點(diǎn),以為一邊在下方作等邊,連接并延長(zhǎng)至點(diǎn)為上一點(diǎn),且,則的長(zhǎng)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一塊含30°角的直角三角板(如圖),它的斜邊AB=8cm,里面空心△DEF的各邊與△ABC的對(duì)應(yīng)邊平行,且各對(duì)應(yīng)邊的距離都是1cm,那么△DEF的周長(zhǎng)是( )
A、5cm B、6cm C、(6-)cm D、(3+)cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為_______°;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生1800人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí) 達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于A、B兩點(diǎn),A點(diǎn)坐標(biāo)是(﹣2,1),B點(diǎn)坐標(biāo)(1,n);
(1)求出k,b,m,n的值;
(2)求△AOB的面積;
(3)直接寫出一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)興趣小組活動(dòng)中,李燕和劉凱兩位同學(xué)設(shè)計(jì)了如圖所示的兩個(gè)轉(zhuǎn)盤做游戲(每個(gè)轉(zhuǎn)盤被分成面積相等的幾個(gè)扇形,并在每個(gè)扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時(shí)轉(zhuǎn)動(dòng)甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后, 若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于 12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于 13,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).
(1)請(qǐng)用列表或畫樹狀圖的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;
(2)游戲?qū)﹄p方公平嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】類比等腰三角形的定義,我們定義:有一組鄰邊相等的凸四邊形叫做“等鄰邊四邊形”.
(1)如圖 1,在四邊形 ABCD 中,添加一個(gè)條件使得四邊形 ABCD 是“等鄰邊四邊形”.請(qǐng)寫出你添加的一個(gè)條件.
(2)小紅猜想:對(duì)角線互相平分的“等鄰邊四邊形”是菱形.她的猜想正確嗎?請(qǐng)說明理由.
(3)如圖 2,小紅作了一個(gè)Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并將 Rt△ABC 沿∠ABC 的平分線 BB′方向平移得到△A′B′C′,連結(jié) AA′, BC′.小紅要使得平移后的四邊形 ABC′A′是“等鄰邊四邊形”,應(yīng)平移多少距離(即線段 B′B 的長(zhǎng))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,小正方形的邊長(zhǎng)均為1,則下列選項(xiàng)中陰影部分的三角形與△ABC相似的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點(diǎn)C在半圓O上,AB=5cm,AC=4cm.D是弧BC上的一個(gè)動(dòng)點(diǎn)(含端點(diǎn)B,不含端點(diǎn)C),連接AD,過點(diǎn)C作CE⊥AD于E,連接BE,在點(diǎn)D移動(dòng)的過程中,BE的取值范圍是____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com