【題目】為了促進學生多樣化發(fā)展,某校組織開展了社團活動,分別設置了體育類、藝術類、文學類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學生喜愛哪種社團活動,學校做了一次抽樣調查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖, 請根據(jù)圖中提供的信息,完成下列問題:

1)此次共調查了 人;

2)求文學社團在扇形統(tǒng)計圖中所占圓心角為 度;

3)請將條形統(tǒng)計圖補充完整;

4)若該校有 1500 名學生,請估計喜歡體育類社團的學生有多少人?

【答案】(1)200人;(2)108°;(3)詳見解析;(4)600人.

【解析】

1)根據(jù)喜歡體育類的人數(shù)和所占百分比可求出總人數(shù);

2)根據(jù)喜歡文學類的人數(shù)算出所占百分比,乘以360°即可求出所占圓心角度數(shù);

3)求出喜歡藝術類的人數(shù)和其他的人數(shù),補全統(tǒng)計圖即可;

4)用樣本估計整體計算即可.

1)由條形圖可知喜歡體育的人有80,占總人數(shù)的40%,

80÷40%=200(人).

∴此次共調查200人.

2×360°=108°

∴文學社團在扇形統(tǒng)計圖中所占圓心角的度108°

3

喜歡藝術類人數(shù):200×20%=40(人),其他的人數(shù)=200-80-60-40=20(人)

補全統(tǒng)計圖如圖,

41500×40%=600(人).

∴估計該校喜歡體育類社團的學生有600人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC的三個頂點的坐標分別為A(﹣5,0)、B(﹣23)、C(﹣1,0

1)畫出△ABC向下平移3個單位的△A1B1C1

2)將△A1B1C1繞原點O旋轉180°,畫出旋轉后的△A2B2C2;

3)在(2)中,線段A1B1 掃過的面積為    .(設圖中小正方的邊長為1個單位長度)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,E、F分別為矩形ABCD的邊ADBC上的點,AE=CF.求證:BE=DF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)(操作發(fā)現(xiàn))

如圖 1,在邊長為 1 個單位長度的小正方形組成的網(wǎng)格中,ABC 的三個頂點均在格點上.現(xiàn)將ABC 繞點 A 按順時針方向旋轉 90°,點 B 的對應點為 B′,點 C 的對應點為 C′, 連接 BB′,如圖所示則∠AB′B

2)(解決問題)

如圖 2,在等邊ABC 內有一點 P,且 PA2,PB PC1,如果將BPC 繞點 B 順時針旋轉 60°得出ABP′,求∠BPC 的度數(shù)和 PP′的長;

3)(靈活運用)

如圖 3,將(2)題中在等邊ABC 內有一點 P 改為在等腰直角三角形 ABC 內有一點P”,且 BA=BC,PA6,BP4PC2,求∠BPC 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABBC于點B,CDBC于點C,AB=4,CD=6,BC=14,PBC邊上一點,試問BP為何值時,以A,B,P為頂點的三角形與以P,C,D為頂點的三角形相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC 在平面直角坐標系中的位置如圖所示, 其中每個小正方形的邊長為1個單位長度.

1)△ABC 關于原點 O 的中心對稱圖形為△A1B1C1,寫出點 A 的對應點 A1 的坐標 ;

2)畫出將△ABC 繞點O 順時針旋轉 90°得到的△A2B2C2;

3)若 Pa,b)為△ABC 邊上一點,則在△A2B2C2 中,點 P 對應的點 Q 的坐標為

4)請直接寫出:以 A、B、C 為頂點的平行四邊形的第四個頂點 D 的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,ADBC,垂足為點D,AN是△ABC外角∠CAM的平分線,CEAN,垂足為點E

(1)求證:四邊形ADCE為矩形;

(2)當△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小俊在A處利用高為1.5米的測角儀AB測得樓EF頂部E的仰角為30°,然后前進12米到達C處,又測得樓頂E的仰角為60°,求樓EF的高度.(結果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示, P 是直線 l 外一點,點 A、B、C l 上,且 PB l ,下列說法:① PAPB、PC 3 條線段中, PB 最短;②點 P 到直線 l 的距離是線段 PB 的長;③線段 AB 的長是點 A PB 的距離;④線段 PA 的長是點 P 到直線 l 的距離. 其中正確的是(

A. ①②③B. ①②④C. ①③④D. ②③④

查看答案和解析>>

同步練習冊答案