【題目】如圖,在平面網(wǎng)格中每個(gè)小正方形的邊長為1.
(1)線段CD是線段AB經(jīng)過怎樣的平移后得到的?
(2)線段AC是線段BD經(jīng)過怎樣的平移后得到的?
【答案】
(1)將線段AB向右平移3個(gè)小格(向下平移4 個(gè)小格),再向下平移4個(gè)小格(向右平移3個(gè)小格), 得線段CD.
(2)將線段BD向左平移3個(gè)小格(向下平移1個(gè)小格),再向下平移1個(gè)小格(向左平移3個(gè)小格),得到線段AC.
【解析】(1)將線段AB向右平移3個(gè)小格(向下平移4 個(gè)小格),再向下平移4個(gè)小格(向右平移3個(gè)小格), 得線段CD.(2)將線段BD向左平移3個(gè)小格(向下平移1個(gè)小格),再向下平移1個(gè)小格(向左平移3個(gè)小格),得到線段AC. 先左右平移還是先上下平移不影響平移后圖形與點(diǎn)的位置.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將二次函數(shù)y=x2的圖象先向上平移1個(gè)單位,然后向右平移2個(gè)單位,得到新的二次函數(shù)的頂點(diǎn)式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=2,AD=4,∠DAB=90°,AD∥BC.E是射線BC上的動(dòng)點(diǎn)(點(diǎn)E與點(diǎn)B不重合),M是線段DE的中點(diǎn),連結(jié)BD,交線段AM于點(diǎn)N,如果以A,N,D為頂點(diǎn)的三角形與△BME相似,則線段BE的長為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,以BC為直徑的⊙O交AC于點(diǎn)D,過點(diǎn)D作DE⊥AB,DF⊥BC,垂足分別為E、F.
(1)求證:ED是⊙O的切線;
(2)若DF=3,cosA=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,F(xiàn)是BC上任意一點(diǎn),連接AF交對(duì)角線BD于點(diǎn)E,連接EC.
(1)求證:AE=EC;
(2)當(dāng)∠ABC=60°,∠CEF=60°時(shí),點(diǎn)F在線段BC上的什么位置?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=ax+b與雙曲線(x>0)交于A(x1,y1),B(x2,y2)兩點(diǎn)(A與B不重合),直線AB與x軸交于P(x0,0),與y軸交于點(diǎn)C.
(1)若A,B兩點(diǎn)坐標(biāo)分別為(1,3),(3,y2),求點(diǎn)P的坐標(biāo).
(2)若b=y1+1,點(diǎn)P的坐標(biāo)為(6,0),且AB=BP,求A,B兩點(diǎn)的坐標(biāo).
(3)結(jié)合(1),(2)中的結(jié)果,猜想并用等式表示x1,x2,x0之間的關(guān)系(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OP∥QR∥ST,則下列各式中正確的是( 。
A.∠1+∠2+∠3=180°
B.∠1+∠2﹣∠3=90°
C.∠1﹣∠2+∠3=90°
D.∠2+∠3﹣∠1=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】能說明命題“關(guān)于x的一元二次方程x2+mx+4=0,當(dāng)m<﹣2時(shí)必有實(shí)數(shù)解”是假命題的一個(gè)反例為( )
A.m=﹣4
B.m=﹣3
C.m=﹣2
D.m=4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com