【題目】20195月以來昆明高溫天氣創(chuàng)歷史新高,市民戲稱昆明“春城”變“夏城”,百姓對(duì)電風(fēng)扇的需求量比往年明顯增加.某超市銷售每臺(tái)進(jìn)價(jià)分別為元、元的兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售收入

種型號(hào)

種型號(hào)

第一周

臺(tái)

臺(tái)

第二周

臺(tái)

臺(tái)

(進(jìn)價(jià)、售價(jià)均保持不變,利潤=銷售收入-進(jìn)貨成本)

1)求兩種型號(hào)的電風(fēng)扇每臺(tái)售價(jià)各是多少元?

2)若超市準(zhǔn)備用不多于元的金額再采購這兩種型號(hào)的電風(fēng)扇共臺(tái),求種型號(hào)的電風(fēng)扇最多能采購多少臺(tái)?

3)在(2)的條件下,超市銷售完這臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤超過元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購方案;若不能,請(qǐng)說明理由.

【答案】1AB兩種型號(hào)的電風(fēng)扇單價(jià)分別200元,150元;

2種型號(hào)的電風(fēng)扇最多能采購37臺(tái),采購金額不多于7500元;

(3)能,方案如下;

當(dāng)時(shí),采購A種型號(hào)的電風(fēng)扇36臺(tái),B種型號(hào)的電風(fēng)扇14臺(tái);

當(dāng)時(shí),采購A種型號(hào)的電風(fēng)扇37臺(tái),B種型號(hào)的電風(fēng)扇13臺(tái);

【解析】

1)設(shè)出A,B兩種電風(fēng)扇的銷售單價(jià),根據(jù)表格中的信息列出方程組求解;

2)根據(jù)臺(tái)電風(fēng)扇和不多于元的金額設(shè)未知數(shù)列出不等式即可求解.

(3)根據(jù)實(shí)現(xiàn)利潤超過元的目標(biāo)列出不等式,聯(lián)立第二問中的取值,結(jié)合實(shí)際取整確定相應(yīng)的采購方案.

1)設(shè)A、B兩種型號(hào)的電風(fēng)扇單價(jià)分別為

根據(jù)題意得

解得

答:A、B兩種型號(hào)的電風(fēng)扇單價(jià)分別200元,150.

2)設(shè)采購A種型號(hào)電風(fēng)扇a臺(tái),則采購B種型號(hào)電風(fēng)扇(50-a)臺(tái).

根據(jù)題意:

解得

答:種型號(hào)的電風(fēng)扇最多能采購37臺(tái),采購金額不多于7500元.

(3)根據(jù)題意得:

解得

根據(jù)(2)中條件

相應(yīng)方案有兩種:

當(dāng)時(shí),采購A種型號(hào)的電風(fēng)扇36臺(tái),B種型號(hào)的電風(fēng)扇14臺(tái);

當(dāng)時(shí),采購A種型號(hào)的電風(fēng)扇37臺(tái),B種型號(hào)的電風(fēng)扇13臺(tái);

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為10,點(diǎn)E、F、G、H分別在AB、BC、CD、DA且滿足AE∶BF∶CG∶DH=1∶2∶3∶4. 問當(dāng)AE長為多少時(shí),四邊形EFGH的面積最小?并求出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD中,EAD邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)F,G,H分別是BC,BE,CE的中點(diǎn).

(1)求證:BGF≌△FHC;

(2)設(shè)AD=a,當(dāng)四邊形EGFH是正方形時(shí),求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABC的三邊為邊分別作等邊△ACD△ABE、△BCF, 則下列結(jié)論:

①△EBF≌△DFC

四邊形AEFD為平行四邊形;

當(dāng)AB=AC∠BAC=1200時(shí),四邊形AEFD是正方形.

其中正確的結(jié)論是 .(請(qǐng)寫出正確結(jié)論的番號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CDAB,垂足為D,點(diǎn)EBC上,EFAB,垂足為F

(1)CDEF平行嗎?為什么?

(2)如果∠1=2,且∠3=120°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E是邊AB上的一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),連接DE,點(diǎn)A關(guān)于直線DE的對(duì)稱點(diǎn)為F,連接EF并延長交BC于點(diǎn)G,連接DG,過點(diǎn)EEHDEDG的延長線于點(diǎn)H,連接BH.

(1)求證:GF=GC;

(2)用等式表示線段BHAE的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,E,D分別是邊ABAC上的點(diǎn),且AEADBD,CE交于點(diǎn)FAF的延長線交BC于點(diǎn)H,若∠EAF=∠DAF,則圖中的全等三角形共有( 。

A.4對(duì)B.5對(duì)C.6對(duì)D.7對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn)是直線上一動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)、重合),,,,連接

1)如圖1,當(dāng)點(diǎn)在線段上時(shí),求證:

2)如圖2,當(dāng)點(diǎn)在線段的延長線上時(shí),其他條件不變,請(qǐng)寫出、三條線段之間的數(shù)量關(guān)系,并說明理由.

3)當(dāng)點(diǎn)在線段的反向延長線上時(shí),且點(diǎn)、分別在直線的兩側(cè),其他條件不變,若,,直接寫出的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是直線l外一點(diǎn),AB,C三點(diǎn)在直線l上,且PBl于點(diǎn)B,∠APC90°,則下列結(jié)論:①線段AP是點(diǎn)A到直線PC的距離;②線段BP的長是點(diǎn)P到直線l的距離;③PAPB,PC三條線段中,PB最短;④線段PC的長是點(diǎn)P到直線l的距離,其中,正確的是( )

A. ②③ B. ①②③ C. ③④ D. ①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案