【題目】探索:在圖1至圖2中,已知的面積為a

(1)如圖1,延長(zhǎng)的邊BC到點(diǎn)D,使CD=BC,連接DA;延長(zhǎng)邊CA到點(diǎn)E,使CA=AE,連接DE;若的面積為,則= (用含a的代數(shù)式表示);

(2)在圖1的基礎(chǔ)上延長(zhǎng)AB到點(diǎn)F,使BF=AB,連接FDFE,得到(如圖2).若陰影部分的面積為,則= (用a含的代數(shù)式表示);

(3)發(fā)現(xiàn):像上面那樣,將各邊均順次延長(zhǎng)一倍,連接所得端點(diǎn),得到(如圖2),此時(shí),我們稱向外擴(kuò)展了一次.可以發(fā)現(xiàn),擴(kuò)展n次后得到的三角形的面積是面積的 倍(用含n的代數(shù)式表示);

(4)應(yīng)用:某市準(zhǔn)備在市民廣場(chǎng)一塊足夠大的空地上栽種牡丹花卉,工程人員進(jìn)行了如下的圖案設(shè)計(jì):首先在的空地上種紫色牡丹,然后將向外擴(kuò)展二次(如圖3).在第一次擴(kuò)展區(qū)域內(nèi)種黃色牡丹,第二次擴(kuò)展區(qū)域內(nèi)種紫色牡丹,紫色牡丹花的種植成本為100元/平方米,黃色牡丹花的種植成本為95元/平方米.要使得種植費(fèi)用不超過(guò)48700元,工程人員在設(shè)計(jì)時(shí),三角形的面積至多為多少平方米?

【答案】1 ;(2;(3 ;(4的面積至多為10平方米.

【解析】

(1)連接AD,根據(jù)等底等高的三角形的面積相等求出△ADE的面積即可;

(2)根據(jù)等底等高的三角形的面積相等求出△ADE、△AEF、△AFD的面積,相加即可;

(3)(2)得到△ABC向外擴(kuò)展了一次得到的△DEF的面積SDEF=7a,△ABC向外擴(kuò)展了二次得到的△MGH的面積SMGH=72a,找出規(guī)律即可;

(4)(2)(3)的結(jié)論確定出種黃色牡丹,種紫色牡丹的面積,用總費(fèi)用建立不等式,即可.

(1)如圖1,連接AD,

BC=CD

SABC=SDAC=a,

AE=AC,

SDAE=SDAC=SABC=a

S1=SCDE=SDAE+SDAC=2a,

故答案為:2a;

(2)如圖2

(1)有,SCDE=2a,

(1)的方法得到,

SEAF=2a,

SBDF=2a

S2=SCDE+SEAF+SBDF=6a,

故答案為:6a;

(3)(2)S2=6a,

SDEF=S2+SABC=6a+a=7a,

∴△ABC向外擴(kuò)展了一次得到的△DEF的面積SDEF=7a,

∴△ABC向外擴(kuò)展了二次得到的△MGH,可以看作是△DEF向外擴(kuò)展了一次得到,

SMGH=7SDEF=7×7a=72a,

∴△ABC向外擴(kuò)展了二次得到的△MGH的面積SMGH=72a,

同理:△ABC向外擴(kuò)展了n次得到的三角形的面積S=7na,

故答案為:7n;

(4)(2)有,△ABC第一次擴(kuò)展區(qū)域面積為S2=6a,

同理:△ABC第二次擴(kuò)展區(qū)域可以看成是△DEF向外擴(kuò)展了一次得到,

S3=6SDEF=6×7a=42a,

∵在△ABC的空地上種紫色牡丹,第二次擴(kuò)展區(qū)域內(nèi)種紫色牡丹,

∴種紫色牡丹的面積為a+42a=43a

∵在第一次擴(kuò)展區(qū)域內(nèi)種黃色牡丹,

∴種黃色牡丹的面積為6a

∵紫色牡丹花的種植成本為100/平方米,黃色牡丹花的種植成本為95/平方米.要使得種植費(fèi)用不超過(guò)48700元,

100×43a+95×6a48700,

a10,

∴工程人員在設(shè)計(jì)時(shí),三角形ABC的面積至多為10平方米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某小學(xué)門(mén)口有一直線馬路,交警在門(mén)口設(shè)有一條寬度為4米的斑馬線,為安全起見(jiàn),規(guī)定車頭距斑馬線后端的水平距離不得低于2米,現(xiàn)有一旅游車在路口遇紅燈剎車停下,汽車?yán)锼緳C(jī)與斑馬線前后兩端的視角分別為∠FAE=15°和∠FAD=30°,司機(jī)距車頭的水平距離為0.8米,試問(wèn)該旅游車停車是否符合上述安全標(biāo)準(zhǔn)?(E,D,C,B四點(diǎn)在平行于斑馬線的同一直線上)(參考數(shù)據(jù):tan15°=2-≈1.732,≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD 與正方形關(guān)于某點(diǎn)中心對(duì)稱.已知A,,D三點(diǎn)的坐標(biāo)分別是(0,4),(0,3),(0,2).

(1)求對(duì)稱中心的坐標(biāo):

(2)寫(xiě)出頂點(diǎn)B,C,的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)團(tuán)委組織學(xué)生去兒童福利院慰問(wèn),準(zhǔn)備購(gòu)買15個(gè)甲種文具和20個(gè)乙種文具,共需885元;后翻閱商場(chǎng)海報(bào)發(fā)現(xiàn),下周甲、乙兩種文具進(jìn)行促銷活動(dòng),甲種文具打八折銷售、乙種文具打九折,且打折后兩種文具的銷售單價(jià)相同.

(1)求甲、乙兩種文具的原銷售單價(jià)各為多少元?

(2)購(gòu)買打折后的15個(gè)甲種文具和20個(gè)乙種文具,共可節(jié)省多少錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A 的坐標(biāo)是(4,0),并且0A=OC=4OB,動(dòng)點(diǎn)P在過(guò)A,B,C三點(diǎn)的拋物線上.

(1) 求拋物線的解析式;

(2)過(guò)動(dòng)點(diǎn)PPE垂直于y軸于點(diǎn)E,交直線AC于點(diǎn)D,過(guò)點(diǎn)Dx軸的垂線,垂足為F,連接EF,當(dāng)線段EF的長(zhǎng)度最短時(shí),求出點(diǎn)P的坐標(biāo);

(3) 是否存在點(diǎn)P,使得ACP是以AC為直角邊的直角三角形? 若存在,求出所有符合條件的點(diǎn)P的坐標(biāo); 若不存在,說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)y=kx+b (k0) 的圖像與反比例函數(shù)y=-的圖像交于A-2,m)和B (n-2) 兩點(diǎn),求:(1)一次函數(shù)的解析式;

2)△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】10分在東營(yíng)市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購(gòu)進(jìn)一批電腦和電子白板,經(jīng)過(guò)市場(chǎng)考察得知,購(gòu)買1臺(tái)電腦和2臺(tái)電子白板需要35萬(wàn)元,購(gòu)買2臺(tái)電腦和1臺(tái)電子白板需要25萬(wàn)元

1求每臺(tái)電腦、每臺(tái)電子白板各多少萬(wàn)元?

2根據(jù)學(xué)校實(shí)際,需購(gòu)進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用不超過(guò)30萬(wàn)元,但不低于28萬(wàn)元,請(qǐng)你通過(guò)計(jì)算求出有幾種購(gòu)買方案,哪種方案費(fèi)用最低

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校八年級(jí)全體同學(xué)參加了某項(xiàng)捐款活動(dòng),隨機(jī)抽查了部分同學(xué)捐款的情況統(tǒng)計(jì)如圖所示.

1)本次共抽查學(xué)生      人,并將條形圖補(bǔ)充完整;

2)捐款金額的眾數(shù)是     平均數(shù)是      中位數(shù)為      

3)在八年級(jí)600名學(xué)生中,捐款20元及以上(含20元)的學(xué)生估計(jì)有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-2,1),B(-1,4),C(-3,2).

(1)以原點(diǎn)O為位似中心,相似比為12,在y軸的左側(cè),畫(huà)出ABC放大后的圖形A1B1C1,并直接寫(xiě)出C1點(diǎn)的坐標(biāo);

(2)若點(diǎn)D(a,b)在線段AB上,請(qǐng)直接寫(xiě)出經(jīng)過(guò)(1)的變化后點(diǎn)D的對(duì)應(yīng)點(diǎn)D1的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案