【題目】如圖,矩形ABCD中,AB>AD,把矩形沿對(duì)角線AC所在直線折疊,使點(diǎn)B落在點(diǎn)E處,AE交CD于點(diǎn)F,連接DE.
(1)求證:△ADE≌△CED;
(2)求證:△DEF是等腰三角形.
【答案】(1)詳見解析;(2)詳見解析;
【解析】
(1)根據(jù)矩形的性質(zhì)可得出AD=BC、AB=CD,結(jié)合折疊的性質(zhì)可得出AD=CE、AE=CD,進(jìn)而即可證出△ADE≌△CED(SSS);
(2)根據(jù)全等三角形的性質(zhì)可得出∠DEF=∠EDF,利用等邊對(duì)等角可得出EF=DF,由此即可證出△DEF是等腰三角形.
(1)解:∵四邊形ABCD是矩形,
∴AD=BC,AB=CD.
由折疊的性質(zhì)可得:BC=CE,AB=AE,
∴AD=CE,AE=CD.
在△ADE和△CED中, ,
∴△ADE≌△CED(SSS)
(2)解:由(1)得△ADE≌△CED,
∴∠DEA=∠EDC,即∠DEF=∠EDF,
∴EF=DF,
∴△DEF是等腰三角形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,添加下列一個(gè)條件,不能使△ADE∽△ACB的是( ).
A. DE∥BCB. ∠AED=∠BC. =D. ∠ADE=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】希望中學(xué)八年級(jí)學(xué)生開展踢毽子活動(dòng),每班派5名學(xué)生參加,按團(tuán)體總分排列名次,在規(guī)定時(shí)間內(nèi)每人踢100個(gè)以上(含100)為優(yōu)秀.下表是成績較好的甲班和乙班5名學(xué)生的比賽成績(單位:個(gè))
1號(hào) | 2號(hào) | 3號(hào) | 4號(hào) | 5號(hào) | 總數(shù) | |
甲班 | 100 | 98 | 110 | 89 | 103 | 500 |
乙班 | 89 | 100 | 95 | 119 | 97 | 500 |
經(jīng)統(tǒng)計(jì)發(fā)現(xiàn)兩班5名學(xué)生踢毽子的總個(gè)數(shù)相等.此時(shí)有學(xué)生建議,可以通過考查數(shù)據(jù)中的其它信息作為參考.請(qǐng)你回答下列問題:
(1)求兩班比賽數(shù)據(jù)的中位數(shù);
(2)計(jì)算兩班比賽數(shù)據(jù)的方差,并比較哪一個(gè);
(3)根據(jù)以上信息,你認(rèn)為應(yīng)該把冠軍獎(jiǎng)狀發(fā)給哪一個(gè)班?簡述理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,點(diǎn)O是AC邊上的一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的角平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F
(1)求證:EO=FO;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校隨機(jī)抽取九年級(jí)部分同學(xué)接受一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動(dòng),學(xué)校收集整理數(shù)據(jù)后,將減壓方式分為五類,并繪制了圖1、圖2兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問題:
九年級(jí)接受調(diào)查的同學(xué)共有多少名,并補(bǔ)全條形統(tǒng)計(jì)圖;
九年級(jí)共有500名學(xué)生,請(qǐng)你估計(jì)該校九年級(jí)聽音樂減壓的學(xué)生有多少名;
若喜歡“交流談心”的5名同學(xué)中有三名男生和兩名女生,心理老師想從5名同學(xué)中任選兩名同學(xué)進(jìn)行交流,請(qǐng)用畫樹狀圖或列表的方法求同時(shí)選出的兩名同學(xué)都是女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)C的坐標(biāo)為(﹣1,﹣3),與x軸交于A(﹣3,0)、B(1,0),根據(jù)圖象回答下列問題:
(1)寫出方程ax2+bx+c=0的根;
(2)寫出不等式ax2+bx+c>0的解集;
(3)若方程ax2+bx+c=k有實(shí)數(shù)根,寫出實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃,其中一邊靠墻,另外三邊用長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個(gè)苗圃垂直于墻的一邊長為x米.
(1)若苗圃的面積為72平方米,求x的值;
(2)這個(gè)苗圃的面積能否是120平方米?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c的圖象與x軸交于A(﹣5,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸與x軸交于點(diǎn)D.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖1,點(diǎn)E(x,y)為拋物線上一點(diǎn),且﹣5<x<﹣2,過點(diǎn)E作EF∥x軸,交拋物線的對(duì)稱軸于點(diǎn)F,作EH⊥x軸于點(diǎn)H,得到矩形EHDF,求矩形EHDF周長的最大值;
(3)如圖2,點(diǎn)P為拋物線對(duì)稱軸上一點(diǎn),是否存在點(diǎn)P,使以點(diǎn)P,A,C為頂點(diǎn)的三角形是直角三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線的的頂點(diǎn)為.
(1)頂點(diǎn)的坐標(biāo)為 .
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).若軸且
①點(diǎn)的坐標(biāo)為 ;
②過點(diǎn)作軸的垂線,若直線與拋物線交于兩點(diǎn),該拋物線在之間的部分與線段所圍成的區(qū)域(包括邊界)恰有七個(gè)整點(diǎn),結(jié)合函數(shù)圖象,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com