精英家教網 > 初中數學 > 題目詳情
(2010•江津區(qū))已知:在面積為7的梯形ABCD中,AD∥BC,AD=3,BC=4,P為邊AD上不與A、D重合的一動點,Q是邊BC上的任意一點,連接AQ、DQ,過P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F,則△PEF面積最大值是   
【答案】分析:設PD=x,S△PEF=y.根據平行線的性質、全等三角形的判定及相似三角形的判定,證明△PEF≌△QFE、△AEP∽△AQD、△PDF∽△ADQ,相似三角形的比是相似比的平方,再由三角形AQD與梯形ABCD的面積公式求得梯形的高,代入S△PEF=(S△AQD-S△DPF-S△APE)÷2,得出關于x的二次函數方程,根據頂點坐標公式,求得則△PEF面積最大值.
解答:解:設PD=x,S△PEF=y,S△AQD=z,梯形ABCD的高為h,
∵AD=3,BC=4,梯形ABCD面積為7,

解得
∵PE∥DQ,
∴∠PEF=∠QFE,∠EPF=∠PFD,
又∵PF∥AQ,
∴∠PFD=∠EQF,
∴∠EPF=∠EQF,
∵EF=FE,
∴△PEF≌△QFE(AAS),
∵PE∥DQ,
∴△AEP∽△AQD,
同理,△DPF∽△DAQ,
=,=(2
∴S△PEF=(S△AQD-S△DPF-S△APE)÷2,
∴y=-x2+x,
∵y最大值==,即y最大值=
∴△PEF面積最大值是
點評:本題綜合考查了二次函數的最值、三角形的面積、梯形的面積以及相似三角形的判定與性質.
練習冊系列答案
相關習題

科目:初中數學 來源:2010年全國中考數學試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2010•江津區(qū))如圖,拋物線y=ax2+bx+1與x軸交于兩點A(-1,0),B(1,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)過點B作BD∥CA拋物線交于點D,求四邊形ACBD的面積;
(3)在x軸下方的拋物線上是否存在點M,過M作MN⊥x軸于點N,使以A、M、N為頂點的三角形與△BCD相似?若存在,則求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《三角形》(11)(解析版) 題型:解答題

(2010•江津區(qū))如圖,拋物線y=ax2+bx+1與x軸交于兩點A(-1,0),B(1,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)過點B作BD∥CA拋物線交于點D,求四邊形ACBD的面積;
(3)在x軸下方的拋物線上是否存在點M,過M作MN⊥x軸于點N,使以A、M、N為頂點的三角形與△BCD相似?若存在,則求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《二次函數》(09)(解析版) 題型:解答題

(2010•江津區(qū))如圖,拋物線y=ax2+bx+1與x軸交于兩點A(-1,0),B(1,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)過點B作BD∥CA拋物線交于點D,求四邊形ACBD的面積;
(3)在x軸下方的拋物線上是否存在點M,過M作MN⊥x軸于點N,使以A、M、N為頂點的三角形與△BCD相似?若存在,則求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《二元一次方程組》(03)(解析版) 題型:解答題

(2010•江津區(qū))如圖,拋物線y=ax2+bx+1與x軸交于兩點A(-1,0),B(1,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)過點B作BD∥CA拋物線交于點D,求四邊形ACBD的面積;
(3)在x軸下方的拋物線上是否存在點M,過M作MN⊥x軸于點N,使以A、M、N為頂點的三角形與△BCD相似?若存在,則求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年重慶市江津區(qū)中考數學試卷(解析版) 題型:解答題

(2010•江津區(qū))如圖,拋物線y=ax2+bx+1與x軸交于兩點A(-1,0),B(1,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)過點B作BD∥CA拋物線交于點D,求四邊形ACBD的面積;
(3)在x軸下方的拋物線上是否存在點M,過M作MN⊥x軸于點N,使以A、M、N為頂點的三角形與△BCD相似?若存在,則求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案