【題目】在ABCD中,AD=8,AE平分∠BAD交BC于點(diǎn)E,DF平分∠ADC交BC于點(diǎn)F,且EF=2,則AB的長(zhǎng)為( 。
A.3
B.5
C.2或3
D.3或5
【答案】D
【解析】解:①如圖1,在ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,
∴∠DAE=∠AEB,∠ADF=∠DFC,
∵AE平分∠BAD交BC于點(diǎn)E,DF平分∠ADC交BC于點(diǎn)F,
∴∠BAE=∠DAE,∠ADF=∠CDF,
∴∠BAE=∠AEB,∠CFD=∠CDF,
∴AB=BE,CF=CD,
∵EF=2,
∴BC=BE+CF=2AB﹣EF=8,
∴AB=5;
②在ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,
∴∠DAE=∠AEB,∠ADF=∠DFC,
∵AE平分∠BAD交BC于點(diǎn)E,DF平分∠ADC交BC于點(diǎn)F,
∴∠BAE=∠DAE,∠ADF=∠CDF,
∴∠BAE=∠AEB,∠CFD=∠CDF,
∴AB=BE,CF=CD,
∵EF=2,
∴BC=BE+CF=2AB+EF=8,
∴AB=3;
綜上所述:AB的長(zhǎng)為3或5.
故選D.
根據(jù)平行線的性質(zhì)得到∠ADF=∠DFC,由DF平分∠ADC,得到∠ADF=∠CDF,等量代換得到∠DFC=∠FDC,根據(jù)等腰三角形的判定得到CF=CD,同理BE=AB,根據(jù)已知條件得到四邊形ABCD是平行四邊形,根據(jù)平行四邊形的性質(zhì)得到AB=CD,AD=BC,即可得到結(jié)論.本題考查了等腰三角形的判定和性質(zhì),平行線的性質(zhì),平行四邊形的性質(zhì),解答本題的關(guān)鍵是判斷出BA=BE=CF=CD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB為直徑,過(guò)點(diǎn)B的切線與AC的延長(zhǎng)線交于點(diǎn)D,E是BD中點(diǎn),連接CE.
(1)求證:CE是⊙O的切線;
(2)若AC=4,BC=2,求BD和CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)A表示數(shù)-20,點(diǎn)C表示數(shù)30,我們把數(shù)軸上兩點(diǎn)之間的距離用表示兩點(diǎn)的大寫字母一起標(biāo)記。
比如,點(diǎn)A與點(diǎn)B之間的距離記作AB,點(diǎn)B與點(diǎn)C之間的距離記作BC......
(1)點(diǎn)A與點(diǎn)C之間的距離記作AC,求AC的長(zhǎng);
若數(shù)軸上有一點(diǎn)D滿足CD=AD,求D點(diǎn)表示的數(shù);
(2)動(dòng)點(diǎn)B從數(shù)1對(duì)應(yīng)的點(diǎn)開始向右運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,同時(shí)點(diǎn)A、C在數(shù)軸上運(yùn)動(dòng),點(diǎn)A、C的速度分別為每秒2個(gè)單位長(zhǎng)度,每秒3個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為秒.
①若點(diǎn)A向右運(yùn)動(dòng),點(diǎn)C向左運(yùn)動(dòng),AB=BC,求的值.
②若點(diǎn)A向左運(yùn)動(dòng),點(diǎn)C向右運(yùn)動(dòng),的值不隨時(shí)間的變化而改變,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列各數(shù)填在相應(yīng)的大括號(hào)內(nèi).
15;0.81;-,﹣3;﹣3.1;17;0;3.14
正數(shù)集合{_______________________};
負(fù)數(shù)集合{_______};
整數(shù)集合{_________};
分?jǐn)?shù)集合{_______________________};
有理數(shù)集合{_____________________}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點(diǎn)O.
(1)求證:AD=AE;
(2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填空并解答:
規(guī)定:a2=a×a,a3=a×a×a,an=a×a×…×a(n 個(gè) a)
(1)(2×3)2= ,22×32= ,你發(fā)現(xiàn)(2× 3)2 的值與 22×32 的值 .
(2)(2×3)3= ,23×33= ,你發(fā)現(xiàn)(2×3)3 的值與 23×33 的值 .
由此,我們可以猜想:(a×b)2 a2×b2,(a×b)3 a3×b3,…(a×b)n an×bn.
(3)利用(2)題結(jié)論計(jì)算(﹣2)2018×(﹣)2019 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:(直接寫出結(jié)果)
(1)(﹣6)+(﹣14)=
(2)﹣8﹣(﹣8)=
(3)12+(﹣15)=
(4)+(+16)﹣(+4)=
(5)0﹣(﹣7)=
(6)﹣4×(﹣5)=
(7)0×(﹣15)=
(8)﹣15÷(﹣)=
(9)(﹣3)3=
(10)﹣52=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的數(shù)陣是由50個(gè)偶數(shù)排成的.
(1)圖中框內(nèi)的4個(gè)數(shù)有什么關(guān)系?
(2)在數(shù)陣圖中任意作一類似于(1)中的框,設(shè)其中的一個(gè)數(shù)為,那么其他三個(gè)數(shù)怎樣表示?
(3)如果四個(gè)數(shù)的和是172,能否求出這4個(gè)數(shù)?
(4)如果四個(gè)數(shù)的和是322,能否求出這4個(gè)數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】AD與BE是△ABC的角平分線,D,E分別在BC,AC上,若AD=AB,BE=BC,則∠C=( 。
A. 69° B. C. D. 不能確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com