精英家教網 > 初中數學 > 題目詳情

【題目】如圖所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BF平分∠ABC,交AD于E,若AE=13,求AF的長度.

【答案】解:∵∠BAC=90°,

∴∠ABF+∠AFB=90°,

又∵AD⊥BC,

∴∠ADB=90°,

∴∠EBD+∠BED=90°,

又∵BF平分∠ABC,

∴∠ABF=∠EBD,

∴∠AFB=∠BED,

又∵∠AEF=∠BED,

∴∠AEF=∠AFB,

∴AE=AF,

∵AE=13,

∴AF=13.


【解析】根據三角形內角和定理和角平分線性質得到∠AEF=∠AFB,根據等角對等邊得到AE=AF,求出AF的長度.
【考點精析】認真審題,首先需要了解三角形的內角和外角(三角形的三個內角中,只可能有一個內角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內角的和;三角形的一個外角大于任何一個和它不相鄰的內角).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,信號塔PQ座落在坡度i=1:2的山坡上,其正前方直立著一警示牌.當太陽光線與水平線成60°角時,測得信號塔PQ落在斜坡上的影子QN長為米,落在警示牌上的影子MN長為3米,求信號塔PQ的高.(結果不取近似值)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】五邊形的外角和是_______°.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一元一次方程2x15的解為(  )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】以下各組數分別是三條線段的長度,其中可以構成三角形的是(

A. 1,3,4 B. 1,2,3 C. 6,6,10 D. 1,4,6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,O與RtABC的直角邊AC和斜邊AB分別相切于點C、D,與邊BC相交于點F,OA與CD相交于點E,連接FE并延長交AC邊于點G.

(1)求證:DFAO;

(2)若AC=6,AB=10,求CG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=BC,∠ABC=90°,點F為AB延長線上一點,點E在BC上,BE=BF,連接AE,EF和CF.

(1)求證:△ABE≌△CBF;
(2)若∠CAE=30°,求∠EFC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在如圖的正方形網格中,每一個小正方形的邊長為1.格點三角形ABC(頂點是網格線交點的三角形)的頂點A、C的坐標分別是(﹣4,6),(﹣1,4).

(1)請在圖中的網格平面內建立平面直角坐標系;

(2)請畫出ABC關于x軸對稱的A1B1C1;

(3)請在y軸上求作一點P,使PB1C的周長最小,并寫出點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知一個多邊形的內角和為1080°,則這個多邊形為( 

A. 七邊形 B. 八邊形 C. 九邊形 D. 十邊形

查看答案和解析>>

同步練習冊答案