【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,過點O作OD⊥AB,交BC的延長線于D,交AC于點E,F是DE的中點,連接CF.
(1)求證:CF是⊙O的切線.
(2)若∠A=22.5°,求證:CE=CB.
【答案】(1)見解析;(2)見解析
【解析】
(1)根據(jù)圓周角定理的推論得到∠ACB=∠ACD=90°,根據(jù)直角三角形的性質(zhì)得到CF=EF=DF,求得∠AEO=∠FEC=∠FCE,根據(jù)等腰三角形的性質(zhì)得到∠OCA=∠OAC,于是得到結(jié)論;
(2)連接AD,根據(jù)三角形的內(nèi)角和以及對頂角的性質(zhì)可得到∠OAE=∠CDE=22.5°,再證明△ADO≌△BDO,所以有∠ADO=∠BDO=22.5°,進一步可得出∠CAD=∠ADC=45°,得出AC=CD,最后證明△CDE≌△CAB,即可得出結(jié)論.
證明:(1)∵AB是⊙O的直徑,
∴∠ACB=∠ACD=90°,
∵點F是ED的中點,
∴CF=EF=DF,
∴∠AEO=∠FEC=∠FCE,
∵OA=OC,
∴∠OCA=∠OAC,
∵OD⊥AB,
∴∠OAC+∠AEO=90°,
∴∠OCA+∠FCE=90°,即OC⊥FC,
∴CF與⊙O相切;
(2)連接AD,
∵OD⊥AB,AC⊥BD,
∴∠AOE=∠ACD=90°,
∵∠AEO=∠DEC,
∴∠OAE=∠CDE=22.5°,
∵AO=BO,∠AOD=∠BOD=90°,DO=DO,
∴△ADO≌△BDO(SAS),
∴∠ADO=∠BDO=22.5°,
∴∠ADB=45°,
∴∠CAD=∠ADC=45°,
∴AC=CD.
又∠ACB=∠DCE,∠BAC=∠EDC,
∴△CDE≌△CAB(ASA),
∴CE=CB.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠BAC=90°,∠BAC 的平分線交 BC 于點 O,以 O 為圓心作圓,⊙O 與 AC 相切于點 D.
(1)試判斷 AB 與⊙O 的位置關(guān)系,并加以證明;
(2)在 Rt△ABC 中,若 AC=6,AB=3,求切線 AD 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線與軸交于、兩點(點在點的左側(cè)),與軸交于點.對稱軸為直線,點在拋物線上.
(1)如圖1,為直線下方拋物線上的一點,連接、.當的面積最大時,在直線上取一點,過作軸的垂線,垂足為點,連接,.若時,求的值;
(2)將拋物線沿軸正方向平移得到新拋物線,經(jīng)過原點.與軸的另一個交點為.設(shè)是拋物線上任意一點,點在直線上,能否成為以點為直角頂點的等腰直角三角形?若能、直接寫出點的坐標,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,⊙O是△ABC的外接圓,AB是直徑,D是⊙O外一點且滿足∠DCA=∠B,連接AD.
(1)求證:CD是⊙O的切線;
(2)若AD⊥CD,AB=10,AD=8,求AC的長;
(3)如圖2,當∠DAB=45°時,AD與⊙O交于E點,試寫出AC、EC、BC之間的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BD為⊙O的直徑,AB為⊙O的一條弦,過⊙O外一點P作PO⊥AB,垂足為點C,且交⊙O于點N,PO的延長線交⊙O于點M,連接BM、AD、AP.
(1)求證:PM∥AD;
(2)若∠BAP=2∠M,求證:PA是⊙O的切線;
(3)若AD=6,tan∠M=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,∠ADB=∠CDB=∠BAC=45°,結(jié)論:①∠ABC=90°,②AB=BC,③AD2+DC2=2AB2,④AD+DC=BD,其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=x2+mx+m﹣1的頂點為D,交y軸于C點,交x軸于A(x1,0),B(x2,0)兩點,點A在y軸左邊,點B在y軸右邊,且AB=4.
(1)求拋物線的解析式;
(2)如圖1,AP⊥AD交拋物線于P.求點P的坐標;
(3)如圖2,點H為B,D之間拋物線上一點,直線CH交BD于E,交x軸于F,若S△CDE=S△BEF,求H點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1中, ,點從點出發(fā)以的速度沿折線運動,點從點出發(fā)以的速度沿運動,兩點同時出發(fā),當某一點運動到點時,兩點同時停止運動.設(shè)運動時間為,的面積為),關(guān)于的函數(shù)圖象由兩段組成,如圖2所示,有下列結(jié)論:①;②:③圖象段的函數(shù)表達式為;④面積的最大值為8,其中正確的個數(shù)有( )個
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:將函數(shù)C1的圖象繞點P(m,0)旋轉(zhuǎn)180°,得到新的函數(shù)C2的圖象,我們稱函數(shù)C2是函數(shù)C1關(guān)于點P的相關(guān)函數(shù)。例如:當m=1時,函數(shù)y=(x-3)2+9關(guān)于點P(1,0)的相關(guān)函數(shù)為y=-(x+1)2-9.
(1)當m=0時,
①一次函數(shù)y=-x+7關(guān)于點P的相關(guān)函數(shù)為_______;
②點A(5,-6)在二次函數(shù)y=ax2-2ax+a(a≠0)關(guān)于點P的相關(guān)函數(shù)的圖象上,求a的值;
(2)函數(shù)y=(x-2)2+6關(guān)于點P的相關(guān)函數(shù)是y= -(x-10)2-6,則m=_______
(3)當m-1≤x≤m+2時,函數(shù)y=x2-6mx+4m2關(guān)于點P(m,0)的相關(guān)函數(shù)的最大值為8,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com