【題目】若(k﹣1)x2﹣2kx﹣1=0是關(guān)于x的一元二次方程,則k的取值范圍是( )
A.k≠﹣1
B.k≠1
C.k≠0
D.k≥1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用不等號(hào)填空:
(1)-2________5;(2)|m|(m≠0)________0;(3)a2+1________0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D、E分別是△ABC邊BC、AB上的點(diǎn),AD、CE相交于點(diǎn)G,過(guò)點(diǎn)E作EF∥AD交BC于點(diǎn)F,且,聯(lián)結(jié)FG.
(1)求證:GF∥AB;
(2)如果∠CAG=∠CFG,求證:四邊形AEFG是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將兩個(gè)底邊相等的等腰三角形按照?qǐng)D所示的方式拼接在一起(隱藏互相重合的底邊)的圖形俗稱為“箏形”.假如“箏形”下個(gè)定義,那么下面四種說(shuō)法中,你認(rèn)為最能夠描述“箏形”特征的是 ( )
A. 有兩組鄰邊相等的四邊形稱為“箏形”;
B. 有兩組對(duì)角分別相等的四邊形稱為“箏形”;
C. 兩條對(duì)角線互相垂直的四邊形稱為“箏形”;
D. 以一條對(duì)角線所在直線為對(duì)稱軸的四邊形稱為“箏形”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx﹣3交x軸于B、C兩點(diǎn),且B的坐標(biāo)為(﹣2,0)直線y=mx+n過(guò)點(diǎn)B和拋物線上另一點(diǎn)A(4,3)
(1)求拋物線和直線的解析式;
(2)若點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),且在直線AB下方,過(guò)P作PQ∥x軸,且PQ=4(點(diǎn)Q在P點(diǎn)右側(cè)).以PQ為一邊作矩形PQEF,且點(diǎn)E在直線AB上.求矩形PQEF的最大值.并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,在(2)的結(jié)論下,連接AP、BP,設(shè)QE交于x軸于點(diǎn)D,現(xiàn)即將矩形PQEF沿射線DB以每秒1個(gè)單位長(zhǎng)度的速度平移,當(dāng)點(diǎn)D到達(dá)點(diǎn)B時(shí)停止,記平移時(shí)間為t,平移后的矩形PQEF為P′Q′E′F′,且Q′E′分別交直線AB、x軸于N、D′,設(shè)矩形P′Q′E′F′與△ABP的重疊部分面積為s,當(dāng)NA= ND′時(shí),求s的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把二次函數(shù)y=x2﹣2x+3配方成y=(x﹣m)2+k的形式,以下結(jié)果正確的是( )
A. y=﹣(x﹣1)2+4B. y=(x﹣1)2+2
C. y=(x+1)2+2D. y=(x﹣2)2+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E為BC的中點(diǎn),F(xiàn)是CD上一點(diǎn),且∠AEF=90°,求證:CF= AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A.B.C分別是⊙O上的點(diǎn),∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長(zhǎng)線上的一點(diǎn),且AP=AC.
(1)求證:AP是⊙O的切線;
(2)求PD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com