如圖,在平行四邊形中,過點作,垂足為點,連接,為線段上一點,且.
(1)求證:∽;
(2)若,,,求的長.
科目:初中數(shù)學(xué) 來源: 題型:解答題
操作:小明準備制作棱長為1cm的正方體紙盒,現(xiàn)選用一些廢棄的圓形紙片進行如下設(shè)計:
說明:方案一:圖形中的圓過點A、B、C;
方案二:直角三角形的兩直角邊與展開圖左下角的正方形邊重合,斜邊經(jīng)過兩個正方形的頂點.
紙片利用率=×100%
發(fā)現(xiàn):(1)方案一中的點A、B恰好為該圓一直徑的兩個端點.
你認為小明的這個發(fā)現(xiàn)是否正確,請說明理由.
(2)小明通過計算,發(fā)現(xiàn)方案一中紙片的利用率僅約為38.2%.
請幫忙計算方案二的利用率,并寫出求解過程.
探究:
(3)小明感覺上面兩個方案的利用率均偏低,又進行了新的設(shè)計(方案三),請直接寫出方案三的利用率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
把兩個直角三角形如圖(1)放置,使∠ACB與∠DCE重合,AB與DE相交于點O,其中∠DCE=90°,∠BAC=45°,AB=6cm,CE="5cm," CD=10cm.
(1)圖1中線段AO的長= cm;DO= cm
圖1
(2)如圖2,把△DCE繞著點C逆時針旋轉(zhuǎn)α度(0°<α<90°)得△D1CE1,D1C與AB相交于點F,若△BCE1恰好是以BC為底邊的等腰三角形,求線段AF的長.
圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在矩形ABCD中,AB=10,BC=12,E為DC的中點,連接BE,作AF⊥BE,垂足為F.
(1)求證:△BEC∽△ABF;
(2)求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平行四邊形ABCD中,E為CD上一點,連結(jié)AE,BD,且AE,BD交于點F,S△DEF∶S△ABF=4∶25,求DE∶EC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
閱讀材料
如圖①,△ABC與△DEF都是等腰直角三角形,ACB=∠EDF=90°,且點D在AB邊上,AB、EF的中點均為O,連結(jié)BF、CD、CO,顯然點C、F、O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.解決問題:
(1)將圖①中的Rt△DEF繞點O旋轉(zhuǎn)得到圖②,猜想此時線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點均為O,上述(1)中的結(jié)論仍然成立嗎?如果成立,請說明理由;如不成立,請求出BF與CD之間的數(shù)量關(guān)系;
(3)如圖④,若△ABC與△DEF都是等腰三角形,AB、EF的中點均為0,且頂角∠ACB=∠EDF=α,請直接寫出的值(用含α的式子表示出來)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:如圖,正方形ABCD的邊長為a,BM,DN分別平分正方形的兩個外角,且滿足 ∠MAN=45°,連結(jié)MC,NC,MN.
(1)填空:與△ABM相似的三角形是△ ,BM·DN= ;(用含a的代數(shù)式表示)
(2)求∠MCN的度數(shù);
(3)猜想線段BM,DN和MN之間的數(shù)量關(guān)系并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com