【題目】問(wèn)題情境:如圖①,在ABDCAE中,BD=AEDBA=EAC,AB=AC,易證:ABD≌△CAE.(不需要證明)

特例探究:如圖②,在等邊ABC中,點(diǎn)DE分別在邊BC、AB上,且BD=AE,ADCE交于點(diǎn)F.求證:ABD≌△CAE

歸納證明:如圖③,在等邊ABC中,點(diǎn)DE分別在邊CB、BA的延長(zhǎng)線上,且BD=AEABDCAE是否全等?如果全等,請(qǐng)證明;如果不全等,請(qǐng)說(shuō)明理由.

拓展應(yīng)用:如圖④,在等腰三角形中,AB=AC,點(diǎn)OAB邊的垂直平分線與AC的交點(diǎn),點(diǎn)D、E分別在OB、BA的延長(zhǎng)線上.若BD=AEBAC=50°,AEC=32°,求∠BAD的度數(shù).

【答案】證明見(jiàn)解析,∠BAD=18°

【解析】特例探究:利用等邊三角形的三條邊都相等、三個(gè)內(nèi)角都是60°的性質(zhì)推知AB=AC,DBA=EAC=60°,然后結(jié)合已知條件BD=AE,利用全等三角形的判定定理SAS證得ABD≌△CAE

歸納證明:ABDCAE全等.利用等邊三角形的三條邊都相等、三個(gè)內(nèi)角都是60°的性質(zhì)以及三角形外角定理推知AB=AC,DBA=EAC=120°,然后結(jié)合已知條件BD=AE,利用全等三角形的判定定理SAS證得ABD≌△CAE;

拓展應(yīng)用:利用全等三角形(ABD≌△CAE)的對(duì)應(yīng)角∠BDA=AEC=32°,然后由三角形的外角定理求得∠BAD的度數(shù).

解:特例探究:

證明:∵△ABC是等邊三角形,

AB=AC,DBA=EAC=60°,

ABDCAE中,,

∴△ABD≌△CAE(SAS);

歸納證明:

ABDCAE全等.理由如下:

∵在等邊ABC中,AB=ACABC=BAC=60°,

∴∠DBA=EAC=120°.

ABDCAE中,,

∴△ABD≌△CAE(SAS);

拓展應(yīng)用:

∵點(diǎn)OAB的垂直平分線上,

OA=OB

∴∠OBA=BAC=50°,

∴∠EAC=DBC

ABDCAE中,,

∴△ABD≌△CAE(SAS),

∴∠BDA=AEC=32°,

∴∠BAD=OBABDA=18°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為(2,1),(﹣1,3),(﹣3,2).

1)在圖中作出△ABC關(guān)于x軸對(duì)稱的△ABC′,并寫(xiě)出點(diǎn)A′的坐標(biāo)為   ,點(diǎn)B的坐標(biāo)為   ,點(diǎn)C′的坐標(biāo)為   ;

2)求△ABC的面積;

3)若點(diǎn)Pa,a2)與點(diǎn)Q關(guān)于y軸對(duì)稱,若PQ8,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,△ABC的角平分線AD、BE相交于點(diǎn)P,過(guò)P點(diǎn)作PFADBC的延長(zhǎng)線于點(diǎn)F,交AC于點(diǎn)H.(1)∠APB的度數(shù)為_(kāi)______°;(2)求證:△ABP≌△FBP;(3)求證:AH+BD=AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在、上各取一點(diǎn)E、D,使,連接、相交于點(diǎn)O,再連接、,若,則圖中全等三角形共有(

A.2對(duì)B.3對(duì)C.4對(duì)D.5對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,DAB延長(zhǎng)線上一點(diǎn),點(diǎn)EBC邊上,且BE=BD,連接AE、DE、DC

1)求證:△ABE≌△CBD;

2)若∠CAE=30°,求∠BCD的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】六一期間,某公園游戲場(chǎng)舉行“迎奧運(yùn)”活動(dòng).有一種游戲的規(guī)則是:在一個(gè)裝有個(gè)紅球和若干個(gè)白球(每個(gè)球除顏色外其他相同)的袋中,隨機(jī)摸一個(gè)球,摸到一個(gè)紅球就得到一個(gè)奧運(yùn)福娃玩具.已知參加這種游戲活動(dòng)為人次,公園游戲場(chǎng)發(fā)放的福娃玩具為個(gè).

求參加一次這種游戲活動(dòng)得到福娃玩具的概率;

請(qǐng)你估計(jì)袋中白球接近多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E是正方形ABCD的邊CD上一點(diǎn),以A為圓心,AB為半徑的弧與BE交于點(diǎn)F,則∠EFD=_____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一組數(shù)據(jù)01,22,34,若添加一個(gè)數(shù)據(jù)2,則下列統(tǒng)計(jì)量中發(fā)生變化的是( )

A.方差B.中位數(shù)C.平均數(shù)D.極差

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB=AC,A=36°,AB的垂直平分線MDAC于點(diǎn)D,ABM,以下結(jié)論:①△BCD是等腰三角形;②射線BDACB的角平分線;③△BCD的周長(zhǎng)CBCD=AC+BC;④△ADMBCD.正確的有(

A.①②③B.①②C.①③D.③④

查看答案和解析>>

同步練習(xí)冊(cè)答案