【題目】某校要舉辦國慶聯(lián)歡會,主持人站在舞臺的黃金分割點處最自然得體.如圖,若舞臺AB的長為20m,C為AB的一個黃金分割點(AC<BC),則AC的長為(結(jié)果精確到0.1m)( )

A.6.7m
B.7.6m
C.10m
D.12.4m

【答案】B
【解析】∵C為AB的一個黃金分割點,

∴BC= AB≈12.4cm,

∴AC=20﹣12.4=7.6cm,

所以答案是:B.


【考點精析】解答此題的關鍵在于理解直線、射線、線段的相關知識,掌握直線射線與線段,形狀相似有關聯(lián).直線長短不確定,可向兩方無限延.射線僅有一端點,反向延長成直線.線段定長兩端點,雙向延伸變直線.兩點定線是共性,組成圖形最常見,以及對代數(shù)式求值的理解,了解求代數(shù)式的值,一般是先將代數(shù)式化簡,然后再將字母的取值代入;求代數(shù)式的值,有時求不出其字母的值,需要利用技巧,“整體”代入.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值:a+,其中a=1007.如圖是小亮和小芳的解答過程.

(1)_________的解法是錯誤的;

(2)錯誤的原因在于未能正確地運用二次根式的性質(zhì):_________;

(3)先化簡,再求值:a+2,其中a=-2007.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C在⊙O上,∠CAB的平分線交⊙O于點D,過點D作AC的垂線交AC的延長線于點E,連接BC交AD于點F.

(1)猜想ED與⊙O的位置關系,并證明你的猜想;
(2)若AB=6,AD=5,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在△ABC中,∠DBC與∠ECB分別為△ABC的兩個外角,若∠A60°,∠DBC+ECB多少度;

2)如圖2,在△ABC中,BPCP分別平分外角∠DBC、∠ECB,∠P與∠A有怎樣的數(shù)量關系?為什么?

3)如圖3,在四邊形ABCD中,BP、CP分別平分外角∠EBC、∠FCB,∠P與∠A+D有怎樣的數(shù)量關系?為什么?

4)如圖4,在五邊形ABCDE中,BP、CP分別平分外角∠NBC、∠MCB,∠P與∠A+D+E有怎樣的數(shù)量關系?(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下列解題過程,然后回答問題:

解方程:

解:①當≥0時,原方程可化為: ,解得;

②當<0時,原方程可化為: ,解得

所以原方程的解是

(1)解方程:

(2)探究:當為何值時,方程 ①無解;②只有一個解;③有兩個解。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,對稱軸為直線x=﹣1,與x軸的一個交點為(1,0),與y軸的交點為(0,3),則方程ax2+bx+c=0(a≠0)的解為( )

A.x=1
B.x=﹣1
C.x1=1,x2=﹣3
D.x1=1,x2=﹣4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=4cm,點E、F同時從C點出發(fā),以1cm/s的速度分別沿CB﹣BA、CD﹣DA運動,到點A時停止運動.設運動時間為t(s),△AEF的面積為S(cm2),則S(cm2)與t(s)的函數(shù)關系可用圖象表示為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某縣為了落實中央的強基惠民工程計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成;若乙隊單獨施工則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊先合做15,那么余下的工程由甲隊單獨完成還需5

1)這項工程的規(guī)定時間是多少天?

2)已知甲隊每天的施工費用為6500,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀解題過程,回答問題.

如圖,OC在∠AOB內(nèi),AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度數(shù).

:O點作射線OM,使點M,O,A在同一直線上.

因為∠MOD+BOD=90°,BOC+BOD=90°,所以∠BOC=MOD,

所以∠AOD=180°-BOC=180°-30°=150°.

(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?

(2)如果∠AOB=DOC=x°,AOD=y°,求∠BOC的度數(shù).

查看答案和解析>>

同步練習冊答案