【題目】如圖,在平行四邊形中,是的中點,延長到點,使,連接.
(1)求證:四邊形是平行四邊形;
(2)若,,,求的長.
【答案】(1)見解析;(2).
【解析】
(1)由“平行四邊形的對邊平行且相等”的性質(zhì)推知AD∥BC,且AD=BC;然后根據(jù)中點的定義、結(jié)合已知條件推知四邊形CEDF的對邊平行且相等(DF=CE,且DF∥CE),即四邊形CEDF是平行四邊形;
(2)如圖,過點D作DH⊥BE于點H,構(gòu)造含30度角的直角△DCH和直角△DHE.通過解直角△DCH和在直角△DHE中運用勾股定理來求線段ED的長度.
證明:(1)在ABCD中,AD∥BC,且AD=BC.
∵F是AD的中點,
∴DF=AD.
又∵CE=BC,
∴DF=CE,且DF∥CE,
∴四邊形CEDF是平行四邊形;
(2)解:如圖,過點D作DH⊥BE于點H.
在ABCD中,∵∠B=60°,
∴∠DCE=60°.
∵AB=4,
∴CD=AB=4,
∴CH=CD=2,DH=2.
在CEDF中,CE=DF=AD=3,則EH=1.
∴在Rt△DHE中,根據(jù)勾股定理知DE=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D是BC邊上的一點,∠B=50°,∠BAD=30°,將△ABD沿AD折疊得到△AED,AE與BC交于點F.
(1)填空:∠AFC=______度;
(2)求∠EDF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級某班同學(xué)在慶祝2015年元旦晚會上進(jìn)行抽獎活動.在一個不透明的口
袋中有三個完全相同的小球,把它們分別標(biāo)號1、2、3.隨機(jī)摸出一個小球記下標(biāo)號后放回?fù)u勻,再從中隨
機(jī)摸出一個小球記下標(biāo)號.
(1)請用列表或畫樹形圖的方法(只選其中一種),表示兩次摸出小球上的標(biāo)號的所有結(jié)果;
(2)規(guī)定當(dāng)兩次摸出的小球標(biāo)號相同時中獎,求中獎的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,對角線交于點,并且,點是邊上一動點,延長交于點,當(dāng)點從點向點移動過程中(點與點,不重合),則四邊形的變化是( )
A. 平行四邊形→菱形→平行四邊形→矩形→平行四邊形
B. 平行四邊形→矩形→平行四邊形→菱形→平行四邊形
C. 平行四邊形→矩形→平行四邊形→正方形→平行四邊形
D. 平行四邊形→矩形→菱形→正方形→平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,點Q從點A開始沿AB邊以1 cm/s的速度向點B移動,點P從點B開始沿BC邊以2 cm/s的速度向點C移動,如果點Q,P分別從A,B兩點同時出發(fā),當(dāng)一動點運動到終點,另一動點也隨之停止運動.
(1)幾秒后,△PBQ的面積等于4 cm2?
(2)幾秒后,PQ的長度等于2 cm?
(3)在(1)中,△PBQ的面積能否等于7 cm2?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知張強(qiáng)家、體育場、文具店在同一直線上.如圖的圖象反映的過程是:張強(qiáng)從家跑步去體育場,在那里鍛煉了一陣后又走到文具店去買筆,然后散步走回家.圖中x表示時間,y表示張強(qiáng)離家的距離.則下列說法錯誤的是( )
A. 體育場離張強(qiáng)家2.5千米
B. 體育場離文具店1千米
C. 張強(qiáng)在文具店逗留了15分鐘
D. 張強(qiáng)從文具店回家的平均速度是千米/分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課外興趣小組的同學(xué)們要測量被池塘隔開的兩棵樹A,B之間的距離,他們設(shè)計了如圖所示的測量方案:從樹A沿著垂直于AB的方向走到點E處,再從點E沿著垂直于AE的方向走到點F處,C為AE上一點,其中三位同學(xué)分別測得三組數(shù)據(jù):①AC,∠ACB;②EF,DE,AD;③CD,∠ACB,∠ADB.其中能根據(jù)所測數(shù)據(jù)求得A,B兩樹之間的距離的有________組.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB∥CD,點E、M分別為直線AB、CD上的點,點N為兩平行線間的點,連接NE、NM,過點N作NG平分∠ENM,交直線CD于點G,過點N作NF⊥NG,交直線CD于點F,若∠BEN=160°,則∠NGD﹣∠MNF=__度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABCD中,AB=BC=CD=AD=4cm,∠BAD=∠B=∠C=∠ADC=90°,點P以1cm/s的速度自點A向終點B運動,點Q同時以1cm/s的速度自點B向終點C運動,連接AQ、DP,設(shè)運動時間為t s.
(1)當(dāng)t= s時,點P到達(dá)點B;
(2)求證:在運動過程中,△ABQ≌△DAP始終成立;
(3)如圖2,作QM∥PD,且QM=PD,作MN⊥射線BC于點N,連接CM,請問在Q的運動過程中,∠MCN的度數(shù)是否改變?如果不變,請求出∠MCN;如果改變,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com