【題目】2017420日,成都舉行了建城市森林,享低碳生活的垃圾分類推進工作啟動儀式,在成都設(shè)置有專門的垃圾存放點,做到日產(chǎn)日清。在平面直角坐標(biāo)系中xOy,A,B,C三個垃圾存放點的位置如圖1所示,點A在原點,,.某同學(xué)利用周末時間調(diào)查了這三個存放點的垃圾量,并繪制了如下尚不完整的扇形統(tǒng)計圖(如圖2)。

(1)若C處的垃圾存放量為320千克,求A處的垃圾存放量。

(2)現(xiàn)需要A,C兩處的垃圾分別沿道路AB,CB都運到B處,若點B的橫坐標(biāo)為50,平面直角坐標(biāo)系中一個單位長度所表示的實際距離是1米,每運送1千克垃圾1米的費用為0.005元,求本次運送垃圾的總費用。(結(jié)果保留整數(shù),參考數(shù)據(jù):

【答案】(1)A處垃圾存放量為80千克;(2)總費用為312

【解析】

(1)利用扇形統(tǒng)計圖以及條形統(tǒng)計圖可得出C處垃圾量以及所占百分比,進而求出垃圾總量,進而得出A處垃圾量;

(2)利用銳角三角函數(shù)得出AB,BC的長,進而得出運垃圾所需的費用.

(1)320÷50%×(1-50%-37.5%)=80(千克)

A處的垃圾存放量為80千克;

(2)由題意可知AB=100,BC=100,

AB的運費為80×100×0.005=40(),

BC的運費為170×320×0.005=272(),

則本次運送垃圾的總費用為40+272=312().

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1和∠2互為補角,∠A=D.求證:ABCD.

證明:∵∠1與∠CGD是對頂角,

∴∠1=CGD______.

又∠1和∠2互為補角(已知),

∴∠CGD和∠2互為補角,

AEFD_________,

∴∠A=BFD_______.

∵∠A=D(已知),

∴∠BFD=D_______,

ABCD______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于圓O,連結(jié)BD,∠BAD=105°,∠DBC=75°.

(1)求證:BD=CD;
(2)若圓O的半徑為3,求 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在梯形ABCD中,AD∥BC,AB=AD=5,tan∠DBC= .點E為線段BD上任意一點(點E與點B,D不重合),過點E作EF∥CD,與BC相交于點F,連接CE.設(shè)BE=x,y=

(1)求BD的長;
(2)如果BC=BD,當(dāng)△DCE是等腰三角形時,求x的值;
(3)如果BC=10,求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,∠DAB被對角線AC平分,且AC2=ABAD.我們稱該四邊形為“可分四邊形”,∠DAB稱為“可分角”.

(1)如圖2,在四邊形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求證:四邊形ABCD為“可分四邊形”;
(2)如圖3,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,如果∠DCB=∠DAB,則求∠DAB的度數(shù);
(3)現(xiàn)有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,則△DAB的最大面積等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】震災(zāi)無情人有情.民政局將全市為四川受災(zāi)地區(qū)捐贈的物資打包成件,其中帳篷和食品共320件,帳篷比食品多80件

(1)求打包成件的帳篷和食品各多少件?

(2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性這批帳篷和食品全部運往受災(zāi)地區(qū).已知甲種貨車最多可裝帳篷40件和食品10件,乙種貨車最多可裝帳篷和食品各20件.民政局安排甲、乙兩種貨車時有幾種方案?請你幫助設(shè)計出來.

(3)在第(2)問的條件下,如果甲種貨車每輛付運輸費4000元,乙種貨車每輛付運輸費3600元.民政局應(yīng)選擇哪種方案可使運輸費最少?最少運輸費是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】看圖填空:

(1)1和∠3是直線________被直線____所截得的______;

(2)1和∠4是直線_________被直線____所截得的______;

(3)B和∠2是直線_________被直線_____所截得的______

(4)B和∠4是直線_________被直線_____所截得的_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C,D,E將線段AB分成2:3:4:5四部分,M,P,Q,N分別是AC,CD,DE,EB的中點,且MN=21,求線段PQ的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:則稱是關(guān)于1的平衡數(shù)。

(1)5______是關(guān)于1的平衡數(shù);

(2)________是關(guān)于1的平衡數(shù)(用含的代數(shù)式表示)

(3)判斷與是否是關(guān)于1的平衡數(shù),并說明理由。

查看答案和解析>>

同步練習(xí)冊答案