【題目】大數(shù)學家歐拉非常推崇觀察能力,他說過,今天已知的許多數(shù)的性質(zhì),大部分是通過觀察發(fā)現(xiàn)的,歷史上許多大家,都是天才的觀察家化歸就是將面臨的新問題轉(zhuǎn)化為已經(jīng)熟悉的規(guī)范問題的數(shù)學方法,這是一種具有普遍適用性的數(shù)學思想方法如多項式除以多項式可以類比于多位數(shù)的除法進行計算:

請用以上方法解決下列問題:

1)計算:;

2)若關(guān)于x的多項式能被二項式整除,且ab均為自然數(shù),求滿足以上條件的a,b的值及相應的商.

【答案】1;(2)當,時,商為;當,時,商為;當時,商為

【解析】

1)直接利用豎式計算即可;

2)豎式計算,根據(jù)整除的意義,利用對應項的系數(shù)對應倍數(shù)求得答案即可.

1)列除式如下

2)列除式如下:

∵多項式能被二項式整除,

∴余式,即

又∵a,b為自然數(shù),

,或.

∴當,時,商為;當時,商為;

,時,商為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為m的大正方形,兩塊是邊長都為n的小正方形,五塊是長為m,寬為n的全等小矩形,且mn.(以上長度單位:cm

1)用含m,n的代數(shù)式表示所有裁剪線(圖中虛線部分)的長度之和;

2)觀察圖形,發(fā)現(xiàn)代數(shù)式2m2+5mn+2n2可以因式分解為   ;

3)若每塊小矩形的面積為10cm2,四個正方形的面積和為58cm2,試求(m+n2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將正方形ABCD和正方形BEFG如圖(一)所示放置,已知AB5,BE6,將正方形BEFG繞點B順時針旋轉(zhuǎn)一定的角度α0°≤α360°)到圖(二)所示:連接AE,CG

1)求線段AECG的關(guān)系,并給出證明

2)當旋轉(zhuǎn)至某一個角度時,點C,EG在同一條直線上,請畫出示意圖形,并求出此時AE的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D△ABC的邊AC上,要判斷△ADB△ABC相似,添加一個條件,不正確的是(

A.∠ABD=∠CB.∠ADB=∠ABCC.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】周末小明勻速步行趕往學校參加學校組織的植樹活動,小明從家出發(fā)30分鐘后,忽然想起沒有帶植樹工具,于是馬上掉頭往回走行走速度比之前提高了1千米/時(仍保持勻速步行),同時小明打電話給爸爸,請爸爸幫他把植樹工具送過來,從小明開始打電話到爸爸出門一共用了4分鐘,爸爸的行走速度與此時小明的行走速度相同,兩人相遇后,小明立即趕往學校,爸爸則轉(zhuǎn)身回家,兩人速度均保持不變,爸爸在回家途中用了10分鐘吃早餐,然后立即回家,當爸爸到家時小明剛好到達學校.爸爸和小明相距的路程y(千米)與小明從家出發(fā)的時間x(分鐘)之間的關(guān)系如圖所示,求今天早上小明從家到學校途中行走的總路程是________千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,函數(shù)y=的圖像與x、y軸分別交于點AB.AB為直徑作M.

1)求AB的長;

2)點DM上任意一點,且點D在直線AB上方,過點DDHAB,垂足為H,連接BD.

①當BDH中有一個角等于BAO兩倍時,求點D的坐標;

②當DBH=45°時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,P是底邊上的一個動點(PB、C不重合),以P為圓心,為半徑的與射線交于點D,射線交射線于點E

1)若點E在線段的延長線上,設(shè),y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.

2)連接,若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,△ABO的三個頂點坐標分別為:A(2,3)、B(3,1)、O(0,0).

(1)將△ABO向左平移4個單位,畫出平移后的△A1B1O1

(2)將△ABO繞點O順時針旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后得到的△A2B2O.此時四邊形ABA2B2的形狀是  

(3)在平面上是否存在點D,使得以A、B、O、D為頂點的四邊形是平行四邊形,若存在請直接寫出符合條件的所有點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,ABC的三個頂點坐標分別為A(1,0),B(0,2),C(2,1)

1)以原點O為位似中心,在第二象限畫出A1B1C1,使A1B1C1ABC的位似比為21;

2)點Pab)為線段AC上的任意一點,則點PA1B1C1中的對應點P1的坐標為

查看答案和解析>>

同步練習冊答案