【題目】如圖,四邊形ABCD是正方形,△ADE經(jīng)順時(shí)針旋轉(zhuǎn)后與△ABF重合.
(1)旋轉(zhuǎn)中心是點(diǎn)________,旋轉(zhuǎn)了________度.
(2)如果連接EF,那么△AEF是怎樣的三角形?為什么?
(3)請(qǐng)用尺規(guī)作圖畫出△AEF的外接圓,標(biāo)明圓心M的位置,量出半徑的長度為________,并判斷點(diǎn)C與⊙M的位置關(guān)系為_________.
【答案】(1)A,90;(2)等腰直角三角形,理由見解析;(3)EF的一半,點(diǎn)C在⊙M上
【解析】
(1)利用旋轉(zhuǎn)的定義直接填寫即可;
(2)可證明△ADE≌△ABF,可得出AE=AF,且可求得∠EAF=90°;
(3)由(2)可知M在EF的中點(diǎn)上,所以半徑為EF的一半,利用圓周角定理可知點(diǎn)C在圓上.
(1)由旋轉(zhuǎn)的定義可知旋轉(zhuǎn)中心為A,AD從AD到AB,可知旋轉(zhuǎn)了90°.
故答案為:A;90;
(2)△AEF是等腰直角三角形,理由如下:
∵四邊形ABCD是正方形,∴∠DAB=90°.
∵△ADE經(jīng)順時(shí)針旋轉(zhuǎn)后與△ABF重合,∴△ADE≌△ABF,∠DAB=∠EAF=90°,∴AE=AF,∴△AEF是等腰直角三角形;
(3)∵△AEF為等腰直角三角形,∴M點(diǎn)在EF的中點(diǎn),其外接圓如圖,∵∠ECF=90°,∴點(diǎn)C在⊙M上.
故答案為:EF的一半;點(diǎn)C在⊙M上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4cm,∠BAD=60°.動(dòng)點(diǎn)E、F分別從點(diǎn)B、D同時(shí)出發(fā),以1cm/s的速度向點(diǎn)A、C運(yùn)動(dòng),連接AF、CE,取AF、CE的中點(diǎn)G、H,連接GE、FH.設(shè)運(yùn)動(dòng)的時(shí)間為ts(0<t<4).
(1)求證:AF∥CE;
(2)當(dāng)t為何值時(shí),四邊形EHFG為菱形;
(3)試探究:是否存在某個(gè)時(shí)刻t,使四邊形EHFG為矩形,若存在,求出t的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某軍艦以20節(jié)的速度由西向東航行,一艘電子偵察船以30節(jié)的速度由南向北航行,它能偵察出周圍50海里(包括50海里)范圍內(nèi)的目標(biāo).如圖,當(dāng)該軍艦行至A處時(shí),電子偵察船正位于A處正南方向的B處,且AB=90海里,如果軍船和偵察船仍按原速度沿原方向繼續(xù)航行,那么航行途中偵察船能否偵察到這艘軍艦?如果能,最早何時(shí)能偵察到?如果不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且﹣1<x1<0,對(duì)稱軸x=1.如圖所示,有下列5個(gè)結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實(shí)數(shù)).其中所有結(jié)論正確的是______(填寫番號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC,CA⊥BC,AC=4,在AB邊上取一點(diǎn)D,使AD=BC,作AD的垂直平分線,交AC邊于點(diǎn)F,交以AB為直徑的⊙O于G,H,設(shè)BC=x.
(1)求證:四邊形AGDH為菱形;
(2)若EF=y(tǒng),求y關(guān)于x的函數(shù)關(guān)系式;
(3)連結(jié)OF,CG.
①若△AOF為等腰三角形,求⊙O的面積;
②若BC=3,則CG+9=______.(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動(dòng),△DEF運(yùn)動(dòng),并滿足:點(diǎn)E在邊BC上沿B到C的方向運(yùn)動(dòng),且DE始終經(jīng)過點(diǎn)A,EF與AC交于M點(diǎn).
(1)求證:△ABE∽△ECM;
(2)探究:在△DEF運(yùn)動(dòng)過程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長;若不能,請(qǐng)說明理由;
(3)當(dāng)線段BE為何值時(shí),線段AM最短,最短是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖∠A=∠ABC=∠C=45°,E、F分別是AB、BC的中點(diǎn),則下列結(jié)論,①EF⊥BD,②EF=BD,③∠ADC=∠BEF+∠BFE,④AD=DC,其中正確的是( 。
A. ①②③④ B. ①②③ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)P是BC邊上一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),連接AP,作射線PD,使∠APD=60°,PD交AC于點(diǎn)D,已知AB=a,設(shè)CD=y,BP=x,則y與x函數(shù)關(guān)系的大致圖象是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 端午節(jié)吃粽子時(shí)中華民族的傳統(tǒng)習(xí)慣.五月初五早晨,小麗的媽媽用不透明裝著一些粽子(粽子除內(nèi)部餡料不同外,其他一切相同),其中香腸餡粽子兩個(gè),還有一些綠豆餡粽子,現(xiàn)小麗從中任意拿出一個(gè)是香腸餡粽子的概率為.
(1)求袋子中綠豆餡粽子的個(gè)數(shù);
(2)小麗第一次任意拿出一個(gè)粽子(不放回),第二次再拿出一個(gè)粽子,請(qǐng)你用樹形圖或列表法,求小麗兩次拿到的都是綠豆餡粽子的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com