【題目】已知:如圖1,四邊形ABCD四條邊上的中點分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點四邊形).
(1)四邊形EFGH的形狀是 ,證明你的結(jié)論.
(2)如圖2,請連接四邊形ABCD的對角線AC與BD,當AC與BD滿足 條件時,四邊形EFGH是矩形;證明你的結(jié)論.
(3)你學過的哪種特殊四邊形的中點四邊形是矩形?說明理由.
【答案】(1)四邊形EFGH是平行四邊形;(2)見解析;(3)平行四邊形;互相垂直.
【解析】
試題分析:(1)連接BD,根據(jù)三角形的中位線定理得到EH∥BD,EH=BD,F(xiàn)G∥BD,F(xiàn)G=BD,推出,EH∥FG,EH=FG,根據(jù)一組對邊平行且相等的四邊形是平行四邊形得出四邊形EFGH是平行四邊形;
(2)根據(jù)有一個角是直角的平行四邊形是矩形,可知當四邊形ABCD的對角線滿足AC⊥BD的條件時,四邊形EFGH是矩形;
(3)菱形的中點四邊形是矩形.根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得EH∥BD,EF∥AC,再根據(jù)矩形的每一個角都是直角可得∠1=90°,然后根據(jù)平行線的性質(zhì)求出∠3=90°,再根據(jù)垂直定義解答.
解:(1)四邊形EFGH的形狀是平行四邊形.理由如下:
如圖1,連結(jié)BD.
∵E、H分別是AB、AD中點,
∴EH∥BD,EH=BD,
同理FG∥BD,F(xiàn)G=BD,
∴EH∥FG,EH=FG,
∴四邊形EFGH是平行四邊形;
(2)當四邊形ABCD的對角線滿足互相垂直的條件時,四邊形EFGH是矩形.理由如下:
如圖2,連結(jié)AC、BD.
∵E、F、G、H分別為四邊形ABCD四條邊上的中點,
∴EH∥BD,HG∥AC,
∵AC⊥BD,
∴EH⊥HG,
又∵四邊形EFGH是平行四邊形,
∴平行四邊形EFGH是矩形;
(3)菱形的中點四邊形是矩形.理由如下:
如圖3,連結(jié)AC、BD.
∵E、F、G、H分別為四邊形ABCD四條邊上的中點,
∴EH∥BD,HG∥AC,F(xiàn)G∥BD,EH=BD,F(xiàn)G=BD,
∴EH∥FG,EH=FG,
∴四邊形EFGH是平行四邊形.
∵四邊形ABCD是菱形,
∴AC⊥BD,
∵EH∥BD,HG∥AC,
∴EH⊥HG,
∴平行四邊形EFGH是矩形.
故答案為:平行四邊形;互相垂直.
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,a、b、c分別為∠A、∠B、∠C的對邊,方程cx2+bx﹣a=0是關(guān)于x的一元二次方程.
(1)判斷方程cx2+bx﹣a=0的根的情況為 (填序號);
①方程有兩個相等的實數(shù)根;
②方程有兩個不相等的實數(shù)根;
③方程無實數(shù)根;
④無法判斷
(2)如圖,若△ABC內(nèi)接于半徑為2的⊙O,直徑BD⊥AC于點E,且∠D=30°,求方程cx2+bx﹣a=0的根;
(3)若x=a是方程cx2+bx﹣a=0的一個根,△ABC的三邊a、b、c的長均為整數(shù),試求a、b、c的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了考察某種小麥的長勢,從中抽取了10株麥苗,測得苗高(單位:cm)為:16 9 14 11 12 10 16 8 17 19,則這組數(shù)據(jù)的中位數(shù)和極差分別是
A.13,16 B.14,11 C.12,11 D.13,11
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
①(﹣2x)(4x2﹣2x+1) ②(6a3﹣4a2+2a)÷2a
③a4 +(a2)4 -(a2)2 ④
⑤(2a+b)2 ⑥ (3x+7y)(3x-7y)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列調(diào)查方式中適合的是( )
A. 要了解一批節(jié)能燈的使用壽命,采用普查方式
B. 調(diào)查你所在班級同學的身高,采用抽樣調(diào)查方式
C. 環(huán)保部門調(diào)查長江某段水域的水質(zhì)情況,采用抽樣調(diào)查方式
D. 調(diào)查全市中學生每天的就寢時間,采用普查方式
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com