【題目】1)如圖1,求的度數(shù). (提示:作).

2)如圖2,當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),,求、之間的數(shù)量關(guān)系,并說(shuō)明理由.

3)在(2)的條件下,如果點(diǎn)在射線上運(yùn)動(dòng),請(qǐng)你直接寫(xiě)出、之間的數(shù)量關(guān)系.

【答案】(1)73°;(2),理由詳見(jiàn)解析;(3)

【解析】

1)過(guò)點(diǎn)PPEAB,通過(guò)平行線性質(zhì)來(lái)求∠APC
2)過(guò)PPEADACE,推出ABPEDC,根據(jù)平行線的性質(zhì)得出∠α=APE,∠β=CPE,即可得出答案;
3)若PDB延長(zhǎng)線上,畫(huà)出圖形,根據(jù)平行線的性質(zhì)得出∠α=APE,∠β=CPE,依據(jù)角的和差關(guān)系即可得出答案.

1)如圖1,過(guò)

,

又∵

2

理由是:如圖2,過(guò)點(diǎn)于點(diǎn)

,

3

如圖3,過(guò)PPEAB,交ACE,

ABCD,
ABPECD,
∴∠PAB=APE=α,∠PCD=CPE=β,
∵∠APC=APE-CPE,
∴∠APC=α-β

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子中裝著5個(gè)完全相同的小球,分別標(biāo)有數(shù)字0,1,,2,-1,-2,從袋中隨機(jī)取出一個(gè)小球。
(1)隨機(jī)地從布袋中摸出一個(gè)小球,則摸出的球上數(shù)字為正數(shù)的概率為
(2)若第一次從布袋中隨機(jī)摸出一個(gè)小球,設(shè)記下的數(shù)字為x,再將此球放回盒中,第二次再?gòu)牟即须S機(jī)抽取一張,設(shè)記下的數(shù)字為y,記M(x,y),請(qǐng)用畫(huà)樹(shù)狀圖或列表法列舉出點(diǎn)M所有可能的坐標(biāo),并求點(diǎn)M位于第二象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某養(yǎng)殖戶每年的養(yǎng)殖成本包括固定成本和可變成本,其中固定成本每年均為3萬(wàn)元,可變成本逐年增長(zhǎng),已知該養(yǎng)殖戶第1年的可變成本為2.4萬(wàn)元,設(shè)可變成本平均每年增長(zhǎng)的百分率為x.
(1)用含x的代數(shù)式表示第3年的可變成本為萬(wàn)元.
(2)如果該養(yǎng)殖戶第3年的養(yǎng)殖成本為6.456萬(wàn)元,求可變成本平均每年增長(zhǎng)的百分率?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA切⊙O于A,AB⊥OP于B,若PO=8 cm,BO=2 cm,則PA的長(zhǎng)為(
A.16cm
B.48cm
C.6 cm
D.4 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D 的邊AC上,要判斷 相似,添加一個(gè)條件,不正確的是( )

A.
B.  
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖, = = ,那么△ABD與△BCE相似嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,長(zhǎng)方形紙片ABCD的長(zhǎng)AD9cm,寬AB3cm,將其折疊,使點(diǎn)D與點(diǎn)B重合.

求:(1)折疊后DE的長(zhǎng);(2)以折痕EF為邊的正方形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一架長(zhǎng)2.5米的梯子AB如圖所示斜靠在一面墻上,這時(shí)梯足B離墻底CC=90°)的距離BC0.7米.

(1)求此時(shí)梯頂A距地面的高度AC;

(2)如果梯頂A下滑0.9米,那么梯足B在水平方向,向右滑動(dòng)了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在ABCD中,BF平分∠ABCAD于點(diǎn)F,AEBF于點(diǎn)O,交BC于點(diǎn)E,連接EF

1)求證:四邊形ABEF是菱形:

2)若菱形ABEF的周長(zhǎng)為16,∠BEF120°,求AE的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案