在平面直角坐標(biāo)系xOy中,直線(xiàn)y=kx(k為常數(shù))與拋物線(xiàn)y=x2-2交于A,B兩點(diǎn),且A點(diǎn)在y軸左側(cè),P點(diǎn)的坐標(biāo)為(0,-4),連接PA,PB.有以下說(shuō)法:
①PO2=PA•PB;
②當(dāng)k>0時(shí),(PA+AO)(PB-BO)的值隨k的增大而增大;
③當(dāng)k=時(shí),BP2=BO•BA;
④△PAB面積的最小值為
其中正確的是    .(寫(xiě)出所有正確說(shuō)法的序號(hào))
【答案】分析:首先得到兩個(gè)基本結(jié)論:
(I)設(shè)A(m,km),B(n,kn),聯(lián)立兩個(gè)解析式,由根與系數(shù)關(guān)系得到:m+n=3k,mn=-6;
(II)直線(xiàn)PA、PB關(guān)于y軸對(duì)稱(chēng).
利用以上結(jié)論,解決本題:
(1)說(shuō)法①錯(cuò)誤.如答圖1,設(shè)點(diǎn)A關(guān)于y軸的對(duì)稱(chēng)點(diǎn)為A′,若結(jié)論①成立,則可以證明△POA′∽△PBO,得到∠AOP=∠PBO.而∠AOP是△PBO的外角,∠AOP>∠PBO,由此產(chǎn)生矛盾,故說(shuō)法①錯(cuò)誤;
(2)說(shuō)法②錯(cuò)誤.如答圖2,可求得(PA+AO)(PB-BO)=16為定值,故錯(cuò)誤;
(3)說(shuō)法③正確.聯(lián)立方程組,求得點(diǎn)A、B坐標(biāo),進(jìn)而求得BP、BO、BA,驗(yàn)證等式BP2=BO•BA成立,故正確;
(4)說(shuō)法④正確.由根與系數(shù)關(guān)系得到:S△PAB=2,當(dāng)k=0時(shí),取得最小值為,故正確.
解答:解:設(shè)A(m,km),B(n,kn),其中m<0,n>0.
聯(lián)立y=x2-2與y=kx得:x2-2=kx,即x2-3kx-6=0,
∴m+n=3k,mn=-6.
設(shè)直線(xiàn)PA的解析式為y=ax+b,將P(0,-4),A(m,km)代入得:
,解得a=,b=-4,
∴y=()x-4.
令y=0,得x=,
∴直線(xiàn)PA與x軸的交點(diǎn)坐標(biāo)為(,0).
同理可得,直線(xiàn)PB的解析式為y=()x-4,直線(xiàn)PB與x軸交點(diǎn)坐標(biāo)為(,0).
+===0,
∴直線(xiàn)PA、PB與x軸的交點(diǎn)關(guān)于y軸對(duì)稱(chēng),即直線(xiàn)PA、PB關(guān)于y軸對(duì)稱(chēng).
(1)說(shuō)法①錯(cuò)誤.理由如下:
如答圖1所示,∵PA、PB關(guān)于y軸對(duì)稱(chēng),
∴點(diǎn)A關(guān)于y軸的對(duì)稱(chēng)點(diǎn)A′落在PB上.
連接OA′,則OA=OA′,∠POA=∠POA′.

假設(shè)結(jié)論:PO2=PA•PB成立,即PO2=PA′•PB,
,
又∵∠BPO=∠BPO,
∴△POA′∽△PBO,
∴∠POA′=∠PBO,
∴∠AOP=∠PBO.
而∠AOP是△PBO的外角,
∴∠AOP>∠PBO,矛盾,
∴說(shuō)法①錯(cuò)誤.
(2)說(shuō)法②錯(cuò)誤.理由如下:
易知:=-
∴OB=-OA.
由對(duì)稱(chēng)可知,PO為△APB的角平分線(xiàn),
,
∴PB=-PA.
∴(PA+AO)(PB-BO)=(PA+AO)[-PA-(-OA)]=-(PA+AO)(PA-OA)=-(PA2-AO2).
如答圖2所示,過(guò)點(diǎn)A作AD⊥y軸于點(diǎn)D,則OD=-km,PD=4+km.

∴PA2-AO2=(PD2+AD2)-(OD2+AD2)=PD2-OD2=(4+km)2-(-km)2=8km+16,
∵m+n=3k,∴k=(m+n),
∴PA2-AO2=8•(m+n)•m+16=m2+mn+16=m2+×(-6)+16=m2
∴(PA+AO)(PB-BO)=-(PA2-AO2)=-m2=-mn=-×(-6)=16.
即:(PA+AO)(PB-BO)為定值,所以說(shuō)法②錯(cuò)誤.
(3)說(shuō)法③正確.理由如下:
當(dāng)k=時(shí),聯(lián)立方程組:,得A(,2),B(,-1),
∴BP2=12,BO•BA=2×6=12,
∴BP2=BO•BA,故說(shuō)法③正確.
(4)說(shuō)法④正確.理由如下:
S△PAB=S△PAO+S△PBO=OP•(-m)+OP•n=OP•(n-m)=2(n-m)=2=2,
∴當(dāng)k=0時(shí),△PAB面積有最小值,最小值為=
故說(shuō)法④正確.
綜上所述,正確的說(shuō)法是:③④.
故答案為:③④.
點(diǎn)評(píng):本題是代數(shù)幾何綜合題,難度很大.解答中首先得到兩個(gè)基本結(jié)論,其中PA、PB的對(duì)稱(chēng)性是判定說(shuō)法①的基本依據(jù),根與系數(shù)關(guān)系的結(jié)論是判定說(shuō)法②、④的關(guān)鍵依據(jù).正確解決本題的關(guān)鍵是打好數(shù)學(xué)基礎(chǔ),將平時(shí)所學(xué)知識(shí)融會(huì)貫通、靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,-2),在y軸上確定點(diǎn)P,使△AOP為等腰三角形,則符合條件的有
4
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線(xiàn)y=ax2+bx+c的對(duì)稱(chēng)軸是x=1,并且經(jīng)過(guò)(-2,-5)和(5,-12)兩點(diǎn).
(1)求此拋物線(xiàn)的解析式;
(2)設(shè)此拋物線(xiàn)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C 點(diǎn),D是線(xiàn)段BC上一點(diǎn)(不與點(diǎn)B、C重合),若以B、O、D為頂點(diǎn)的三角形與△BAC相似,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)P在y軸上,點(diǎn)M在此拋物線(xiàn)上,若要使以點(diǎn)P、M、A、B為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)你直接寫(xiě)出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,△ABC的A、B兩個(gè)頂點(diǎn)在x軸上,頂點(diǎn)C在y軸的負(fù)半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線(xiàn)y=ax2+bx+c(a≠0)經(jīng)過(guò)A、B、C三點(diǎn).
(1)求此拋物線(xiàn)的函數(shù)表達(dá)式;
(2)設(shè)E是y軸右側(cè)拋物線(xiàn)上異于點(diǎn)B的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的平行線(xiàn)交拋物線(xiàn)于另一點(diǎn)F,過(guò)點(diǎn)F作FG垂直于x軸于點(diǎn)G,再過(guò)點(diǎn)E作EH垂直于x軸于點(diǎn)H,得到矩形EFGH.則在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,當(dāng)矩形EFGH為正方形時(shí),求出該正方形的邊長(zhǎng);
(3)在拋物線(xiàn)上是否存在異于B、C的點(diǎn)M,使△MBC中BC邊上的高為7
2
?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知A(2,-2),B(0,-2),在坐標(biāo)平面中確定點(diǎn)P,使△AOP與△AOB相似,則符合條件的點(diǎn)P共有
5
5
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點(diǎn)D坐標(biāo)為
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案