如圖,以點O為圓心的兩個同心圓,大圓的弦AB交小圓于C、D,如果AB=3cm,CD=2cm,那么AC=    cm.
【答案】分析:根據(jù)題意:過O作OE⊥CD于E,根據(jù)垂徑定理可以求出AE、CE的長度,AC的長度也就不難求出.
解答:解:過O作OE⊥AB,垂足為E,
∵AB=3cm,CD=2cm,
∴AE=AB=×3=cm,
CE=ED=×2=1cm,
∴AC=AE-CE=-1=cm,
故答案為
點評:本題考查的是垂徑定理,即垂直于弦的直徑平分弦.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,以點O為圓心的兩個同心圓,半徑分別為5和3,若大圓的弦AB與小圓相交,則弦長AB的取值范圍是(  )
A、8≤AB≤10B、AB≥8C、8<AB≤10D、8<AB<10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,以點O為圓心的圓與反比例函數(shù)的圖象相交,若其中一個交點P的坐標為(5,1),則圖中兩塊陰影部分的面積和為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、如圖,以點P為圓心的圓弧與x軸交于A,B兩點,點P的坐標為(4,2),點A的坐標為(2,0),則點B的坐標為
(6,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖是以點O為圓心的半圓,AB是半圓的一條弦,延長OB與過點A的直線交于點C,AB=BC=OB.
(1)試求∠C的度數(shù).
(2)若 D是AC上一點,且AD=BD,試說明BD是⊙O的切線.
(3)在(2)的情況下,若圓O的半徑為2,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,以點O為圓心的兩個同心圓,當大圓的弦AB與小圓相切時弦長AB=8,則這兩個同心圓所形成的圓環(huán)的面積是
16π
16π

查看答案和解析>>

同步練習冊答案