【題目】下列命題為真命題的是( )
A.直角三角形的兩個(gè)銳角互余B.任意多邊形的內(nèi)角和為360°
C.任意三角形的外角中最多有一個(gè)鈍角D.一個(gè)三角形中最多有一個(gè)銳角
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2013年,江陰市某樓盤以每平方米6500元的均價(jià)對(duì)外銷售,因?yàn)闃潜P滯銷,房地產(chǎn)開發(fā)商為了加快資金周轉(zhuǎn),決定進(jìn)行降價(jià)促銷,經(jīng)過連續(xù)兩年下調(diào)后,2015年的均價(jià)為每平方米5265元.
(1)求平均每年下調(diào)的百分率;
(2)假設(shè)2016年的均價(jià)仍然下調(diào)相同的百分率,張強(qiáng)準(zhǔn)備購買一套100平方米的住房,他持有現(xiàn)金20萬元,可以在銀行貸款30萬元,張強(qiáng)的愿望能否實(shí)現(xiàn)?(房價(jià)每平方米按照均價(jià)計(jì)算)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著一部在重慶取景拍攝的電影《火鍋英雄》在山城的熱播,山城人民又掀起了一股去吃洞子老火鍋的熱潮.某餐飲公司為了大力宣傳和推廣該公司的企業(yè)文化,準(zhǔn)備舉辦一個(gè)火鍋美食節(jié).為此,公司派出了若干業(yè)務(wù)員到幾個(gè)社區(qū)作隨機(jī)調(diào)查,了解市民對(duì)火鍋的喜愛程度.業(yè)務(wù)員小王將“喜愛程度”按A、B、C、D進(jìn)行分類,并將自己的調(diào)查結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問題:
“喜愛程度”條形統(tǒng)計(jì)圖“喜愛程度”扇形統(tǒng)計(jì)圖
(說明:A:非常喜歡;B:比較喜歡;C:一般喜歡;D:不喜歡)
(1)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中A類所在的扇形的圓心角度數(shù)是 ;
(3)若小王調(diào)查的社區(qū)大概有5000人,請(qǐng)你用小王的調(diào)查結(jié)果估計(jì)“非常喜歡”和“比較喜歡”的人數(shù)之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時(shí)出發(fā),設(shè)慢車行駛的時(shí)間為x(h),兩車之間的距離為y(km),圖中的折線表示y與x之間的函數(shù)關(guān)系.根據(jù)圖象進(jìn)行以下探究:
信息讀。(1)甲、乙兩地之間的距離為
(2)請(qǐng)解釋圖中點(diǎn)B的實(shí)際意義;
(3)求慢車和快車的速度;
(4)求線段BC所表示的y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(5)若第二列快車也從甲地出發(fā)駛往乙地,速度與第一列快車相同,在第一列快車與慢車相遇30分鐘后,第二列快車與慢車相遇.求第二列快車比第一列快車晚出發(fā)多少小時(shí)?。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,將三角尺的直角頂點(diǎn)P落在∠AOB的平分線OC的任意一點(diǎn)上,使三角尺的兩條直角邊與∠AOB的兩邊分別相交于點(diǎn)E、F。證明:PE=PF。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,我們知道可以用圖形的面積來解釋一些代數(shù)恒等式,如圖1可以解釋完全平方公式(a+b)2=a2+2ab+b2 .
(1)如圖2,請(qǐng)用不同的代數(shù)式表示圖中陰影部分的面積,由此,你能得到怎樣的等式?
(2)請(qǐng)說明這個(gè)等式成立;
(3)已知(2m+n)2=13,(2m﹣n)2=5,請(qǐng)利用上述等式求mn.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC,∠ABC=∠ACB。
(1)尺規(guī)作圖:過頂點(diǎn)A作△ABC的角平分線AD;(不寫作法,保留作圖痕跡)
(2)在AD上任取一點(diǎn)E(不與點(diǎn)A、D重合),連結(jié)BE,CE,求證:EB=EC。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC為等邊三角形,D為BC延長線上的一點(diǎn),CE平分∠ACD,CE=BD,求證:△ADE為等邊三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com