【題目】如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點P為BC的中點,連接EP,AD.
(1)求證:PE是⊙O的切線;
(2)若⊙O的半徑為3,∠B=30°,求P點到直線AD的距離.
【答案】(1)證明見解析;(2).
【解析】
(1)連接FO,由P為BC的中點,AO=CO,得到OP∥AB,由于AC是⊙O的直徑,得出CE⊥AE,根據(jù)OP∥AB,得出OP⊥CE,于是得到OP所在直線垂直平分CE,推出PC=PE,OE=OC,再由∠ACB=90°,即可得到結(jié)論.
(2)設(shè)P點到直線AD的距離為d,記△PAD的面積S△PAD,根據(jù)三角形的面積得到d= ①由勾股定理得BC=6,根據(jù)平行線的性質(zhì)得到∠OPC=∠B=30°,推出△OEA為等邊三角形,得到∠EOA=60°,在Rt△ACD中,由勾股定理得:AD==3 ,將以上數(shù)據(jù)代入①得即可得到結(jié)論.
(1)證明:連接CE,如圖所示:
∵AC為⊙O的直徑,
∴∠AEC=90°.
∴∠BEC=90°.
∵點F為BC的中點,
∴EF=BF=CF.
∴∠FEC=∠FCE.
∵OE=OC,
∴∠OEC=∠OCE.
∵∠FCE+∠OCE=∠ACB=90°,
∴∠FEC+∠OEC=∠OEF=90°.
∴EF是⊙O的切線;
(2)解:設(shè)P點到直線AD的距離為d,記△PAD的面積S△PAD,
則有:S△PAD=ADd=PDAC,
∴d=①
∵⊙O的半徑為3,∠B=30°,
∴∠BAC=60°,AC=6,AB=12,
由勾股定理得BC=6,
∴PC=3
∵O,P分別是AC,BC的中點,
∴OP∥AB,
∴∠OPC=∠B=30°,
∵OE=OA,∠OAE=60°,
∴△OEA為等邊三角形,
∴∠EOA=60°,
∴∠ODC=90°﹣∠COD=90°﹣∠EOA=30°,
∴∠ODC=∠OPC=30°,
∴OP=OD,
∵OC⊥PD,
∴CD=PC=3,
在Rt△ACD中,由勾股定理得:AD==3,
將以上數(shù)據(jù)代入①得:d===.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知:如圖①,四邊形ABCD、CEFG均為正方形.易知BE=DG.
探究:如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.
應(yīng)用:如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD的延長線上.若AE=3ED, ∠A=∠F,△EBC的面積為8,則菱形CEFG的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與相切于點T,直線與相交于兩點,連接.
(1)求證:;
(2)若,請直接寫出圖中陰影部分的面積(結(jié)果保留無理數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰三角形,AB=AC,點D是AB上一點,過點D作DE⊥BC交BC于點E,交CA延長線于點F.
(1)證明:△ADF是等腰三角形;
(2)若∠B=60°,BD=4,AD=2,求EC的長,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解居民的環(huán)保意識,社區(qū)工作人員在光明小區(qū)隨機抽取了若干名居民開展主題為“打贏藍天保衛(wèi)戰(zhàn)”的環(huán)保知識有獎問答活動,并用得到的數(shù)據(jù)繪制了如圖條形統(tǒng)計圖(得分為整數(shù),滿分為10分,最低分為6分)
請根據(jù)圖中信息,解答下列問題:
(1)本次調(diào)查一共抽取了 名居民;
(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)社區(qū)決定對該小區(qū)500名居民開展這項有獎問答活動,得10分者設(shè)為“一等獎”,請你根據(jù)調(diào)查結(jié)果,幫社區(qū)工作人員估計需準(zhǔn)備多少份“一等獎”獎品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點P(x0,y0)到直線Ax+By+C=0(A2+B2≠0)的距離公式為:d=,
例如,求點P(1,3)到直線4x+3y﹣3=0的距離.
解:由直線4x+3y﹣3=0知:A=4,B=3,C=﹣3
所以P(1,3)到直線4x+3y﹣3=0的距離為:d==2
根據(jù)以上材料,解決下列問題:
(1)求點P1(1,-1)到直線3x﹣4y﹣5=0的距離.
(2)已知:⊙C是以點C(2,1)為圓心,1為半徑的圓,⊙C與直線y=﹣x+b相切,求實數(shù)b的值;
(3)如圖,設(shè)點P為問題2中⊙C上的任意一點,點A,B為直線3x+4y+5=0上的兩點,且AB=2,請求出△ABP面積的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當(dāng)BP=1時,tan∠OAE=,其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的港珠澳大橋是目前橋梁設(shè)計中廣泛采用的斜拉橋,它用粗大的鋼索將橋面拉住,為檢測鋼索的抗拉強度,橋梁建設(shè)方從甲、乙兩家生產(chǎn)鋼索的廠方各隨機選取5根鋼索進行抗拉強度的檢測,數(shù)據(jù)統(tǒng)計如下(單位:百噸)
甲、乙兩廠鋼索抗拉強度檢測統(tǒng)計表
鋼索 | 1 | 2 | 3 | 4 | 5 | 平均數(shù) | 中位數(shù) | 方差 |
甲廠 | 10 | 11 | 9 | 10 | 12 | 10.4 | 10 | 1.04 |
乙廠 | 10 | 8 | 12 | 7 | 13 | a | b | c |
(1)求乙廠5根鋼索抗拉強度的平均數(shù)a(百噸)、中位數(shù)b(百噸)和方差c(平方百噸).
(2)橋梁建設(shè)方?jīng)Q定從抗拉強度的總體水平和穩(wěn)定性來決定鋼索的質(zhì)量,問哪一家的鋼索質(zhì)量更優(yōu)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電子廠商設(shè)計了一款制造成本為18元新型電子廠品,投放市場進行試銷.經(jīng)過調(diào)查,得到每月銷售量y(萬件)與銷售單價x(元)之間的部分?jǐn)?shù)據(jù)如下:
銷售單價x(元/件) | … | 20 | 25 | 30 | 35 | … |
每月銷售量y(萬件) | … | 60 | 50 | 40 | 30 | … |
(1)求出每月銷售量y(萬件)與銷售單價x(元)之間的函數(shù)關(guān)系式.
(2)求出每月的利潤z(萬元)與銷售單x(元)之間的函數(shù)關(guān)系式.
(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售利潤率不能高于50%,而且該電子廠制造出這種產(chǎn)品每月的制造成本不能超過900萬元.那么并求出當(dāng)銷售單價定為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?(利潤=售價﹣制造成本)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com