(2013•鹽城)如圖,在平行四邊形ABCD中,E為BC邊上的一點,連結AE、BD且AE=AB.
(1)求證:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.
分析:(1)根據(jù)平行四邊形的對邊互相平行可得AD∥BC,再根據(jù)兩直線平行,內錯角相等可得∠AEB=∠EAD,根據(jù)等邊對等角可得∠ABE=∠AEB,即可得證;
(2)根據(jù)兩直線平行,內錯角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根據(jù)等角對等邊求出AB=AD,然后利用鄰邊相等的平行四邊形是菱形證明即可.
解答:證明:(1)在平行四邊形ABCD中,AD∥BC,
∴∠AEB=∠EAD,
∵AE=AB,
∴∠ABE=∠AEB,
∴∠ABE=∠EAD;

(2)∵AD∥BC,
∴∠ADB=∠DBE,
∵∠ABE=∠AEB,∠AEB=2∠ADB,
∴∠ABE=2∠ADB,
∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB,
∴AB=AD,
又∵四邊形ABCD是平行四邊形,
∴四邊形ABCD是菱形.
點評:本題考查了菱形的判定,平行四邊形的性質,平行線的性質,等邊對等角的性質,等角對等邊的性質,熟練掌握平行四邊形與菱形的關系是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•鹽城)如圖①是3×3正方形方格,將其中兩個方格涂黑,并且使涂黑后的整個圖案是軸對稱圖形,約定繞正方形ABCD的中心旋轉能重合的圖案都視為同一種圖案,例如圖②中的四幅圖就視為同一種圖案,則得到的不同圖案共有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鹽城)如圖所示是一飛鏢游戲板,大圓的直徑把一組同心圓分成四等份,假設飛鏢擊中圓面上每一個點都是等可能的,則飛鏢落在黑色區(qū)域的概率是
1
2
1
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鹽城)如圖,在以點O為原點的平面直角坐標系中,一次函數(shù)y=-
1
2
x+1的圖象與x軸交于點A,與y軸交于點B,點C在直線AB上,且OC=
1
2
AB,反比例函數(shù)y=
k
x
的圖象經(jīng)過點C,則所有可能的k值為
1
2
或-
11
50
1
2
或-
11
50

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鹽城)如圖①,若二次函數(shù)y=
3
6
x2+bx+c的圖象與x軸交于A(-2,0),B(3,0)兩點,點A關于正比例函數(shù)y=
3
x的圖象的對稱點為C.
(1)求b、c的值;
(2)證明:點C在所求的二次函數(shù)的圖象上;
(3)如圖②,過點B作DB⊥x軸交正比例函數(shù)y=
3
x的圖象于點D,連結AC,交正比例函數(shù)y=
3
x的圖象于點E,連結AD、CD.如果動點P從點A沿線段AD方向以每秒2個單位的速度向點D運動,同時動點Q從點D沿線段DC方向以每秒1個單位的速度向點C運動.當其中一個點到達終點時,另一個點隨之停止運動,連結PQ、QE、PE.設運動時間為t秒,是否存在某一時刻,使PE平分∠APQ,同時QE平分∠PQC?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案