【題目】在正方形ABCD中,點(diǎn)E,F分別在邊BC,CD上,且∠EAF=∠CEF=45°.

(1)延長CBG點(diǎn),使得BG=DF (如圖①),求證:△AEG≌△AEF;

(2)若直線EFAB,AD的延長線分別交于點(diǎn)M,N(如圖②),求證:EF2=ME2+NF2;

(3)將正方形改為長與寬不相等的矩形,若其余條件不變(如圖③),請(qǐng)你直接寫出線段EFBE,DF之間的數(shù)量關(guān)系.

【答案】(1)證明見解析(2)EF2=ME2+NF2;(3EF2=2BE2+2DF2

【解析】分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可知AF=AG,∠EAF=∠GAE=45°,故可證△AEG≌△AEF;

(2)將△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABG,連結(jié)GM.由(1)知△AEG≌△AEF,則EG=EF.再由△BME、△DNF、△CEF均為等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后證明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代換即可證明EF2=ME2+NF2;

(3)將△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABG,根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到△ADF≌△ABG,則DF=BG,再證明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代換得到結(jié)論

詳解:(1)∵△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABG,

∴AF=AG,∠FAG=90°,

∵∠EAF=45°,

∴∠GAE=45°,

△AGE△AFE中,

,

∴△AGE≌△AFE(SAS);

(2)設(shè)正方形ABCD的邊長為a.

△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABG,連結(jié)GM.

△ADF≌△ABG,DF=BG.

由(1)知△AEG≌△AEF,

∴EG=EF.

∵∠CEF=45°,

∴△BME、△DNF、△CEF均為等腰直角三角形,

∴CE=CF,BE=BM,NF=DF,

∴a﹣BE=a﹣DF,

∴BE=DF,

∴BE=BM=DF=BG,

∴∠BMG=45°,

∴∠GME=45°+45°=90°,

∴EG2=ME2+MG2,

∵EG=EF,MG=BM=DF=NF,

∴EF2=ME2+NF2

(3)EF2=2BE2+2DF2

如圖所示,延長EFAB延長線于M點(diǎn),交AD延長線于N點(diǎn),

△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△AGH,連結(jié)HM,HE.

由(1)知△AEH≌△AEF,

則由勾股定理有(GH+BE)2+BG2=EH2,

即(GH+BE)2+(BM﹣GM)2=EH2

∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2

2(DF2+BE2)=EF2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,點(diǎn)E、F分別在AD、BC上,且ED=BF,EF與AC相交于點(diǎn)O,求證:OA=OC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD內(nèi)有一折線段,其中AE⊥EF,EF⊥FC,并且AE=4,EF=8,F(xiàn)C=12,則正方形與其外接圓形成的陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,D、E分別是AB、AC的中點(diǎn),BE=2DE,延長DE到點(diǎn)F,使得EF=BE,連接CF.

(1)求證:四邊形BCFE是菱形;

(2)若CE=4,BCF=120°,求菱形BCFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】郵遞員騎摩托車從郵局出發(fā),先向西騎行2千米到達(dá)A村,繼續(xù)向西騎行3千米到達(dá)B村,然后向東騎行9千米到達(dá)C村,最后回到郵局.

(1)C村離A村多遠(yuǎn)?

(2)若摩托車每10千米需1.5升汽油,郵遞員最后回到郵局時(shí),一共用了多少升汽油?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊BC在x軸上,直角頂點(diǎn)A在y軸的正半軸上,A(0,2),B(﹣1,0).

(1)求點(diǎn)C的坐標(biāo);
(2)求過A、B、C三點(diǎn)的拋物線的解析式和對(duì)稱軸;
(3)設(shè)點(diǎn)P(m,n)是拋物線在第一象限部分上的點(diǎn),△PAC的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求使S最大時(shí)點(diǎn)P的坐標(biāo);
(4)在拋物線對(duì)稱軸上,是否存在這樣的點(diǎn)M,使得△MPC(P為上述(3)問中使S最大時(shí)的點(diǎn))為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是學(xué)生小金家附近的一塊三角形綠化區(qū)的示意圖,為增強(qiáng)體質(zhì),他每天早晨都沿著綠化區(qū)周邊小路AB、BC、CA跑步(小路的寬度不計(jì)).觀測(cè)得點(diǎn)B在點(diǎn)A的南偏東30°方向上,點(diǎn)C在點(diǎn)A的南偏東60°的方向上,點(diǎn)B在點(diǎn)C的北偏西75°方向上,AC間距離為400米.問小金沿三角形綠化區(qū)的周邊小路跑一圈共跑了多少米?(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+3經(jīng)過點(diǎn)B(﹣1,0)、C(3,0),交y軸于點(diǎn)A,將線段OB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)M,過點(diǎn)A的直線與x軸交于點(diǎn)D(4,0).直角梯形EFGH的上底EF與線段CD重合,∠FEH=90°,EF∥HG,EF=EH=1.直角梯形EFGH從點(diǎn)D開始,沿射線DA方向勻速運(yùn)動(dòng),運(yùn)動(dòng)的速度為1個(gè)長度單位/秒,在運(yùn)動(dòng)過程中腰FG與直線AD始終重合,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求此拋物線的解析式;
(2)當(dāng)t為何值時(shí),以M、O、H、E為頂點(diǎn)的四邊形是特殊的平行四邊形;
(3)作點(diǎn)A關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)A′,直線HG與對(duì)稱軸交于點(diǎn)K,當(dāng)t為何值時(shí),以A、A′、G、K為頂點(diǎn)的四邊形為平行四邊形?請(qǐng)直接寫出符合條件的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對(duì)角線相交于點(diǎn)于點(diǎn)于點(diǎn)F,連結(jié),則下列結(jié)論:;;圖中共有四對(duì)全等三角形其中正確結(jié)論的個(gè)數(shù)是

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

同步練習(xí)冊(cè)答案