(2010•孝感)如圖,圓錐的底面半徑為5,母線長(zhǎng)為20,一只蜘蛛從底面圓周上一點(diǎn)A出發(fā)沿圓錐的側(cè)面爬行一周后回到點(diǎn)A的最短路程是( )

A.8
B.10
C.15
D.20
【答案】分析:易得圓錐的底面周長(zhǎng)也就是圓錐的側(cè)面展開圖的弧長(zhǎng),利用弧長(zhǎng)公式即可求得側(cè)面展開圖的圓心角,進(jìn)而構(gòu)造直角三角形求得相應(yīng)線段即可.
解答:解:圓錐的底面周長(zhǎng)=2π×5=10π,
設(shè)側(cè)面展開圖的圓心角的度數(shù)為n.
=10π,
解得n=90,
圓錐的側(cè)面展開圖,如圖所示:

∴最短路程為:=20,故選D.
點(diǎn)評(píng):求立體圖形中兩點(diǎn)之間的最短路線長(zhǎng),一般應(yīng)放在平面內(nèi),構(gòu)造直角三角形,求兩點(diǎn)之間的線段的長(zhǎng)度.用到的知識(shí)點(diǎn)為:圓錐的弧長(zhǎng)等于底面周長(zhǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•孝感)如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為(2,0),直線y=x+1與二次函數(shù)的圖象交于A,B兩點(diǎn),其中點(diǎn)A在y軸上.
(1)二次函數(shù)的解析式為y=______;
(2)證明:點(diǎn)(-m,2m-1)不在(1)中所求的二次函數(shù)的圖象上;
(3)若C為線段AB的中點(diǎn),過C點(diǎn)作CE⊥x軸于E點(diǎn),CE與二次函數(shù)的圖象交于D點(diǎn).
①y軸上存在點(diǎn)K,使以K,A,D,C為頂點(diǎn)的四邊形是平行四邊形,則K點(diǎn)的坐標(biāo)是______;
②二次函數(shù)的圖象上是否存在點(diǎn)p,使得S三角形POE=2S三角形ABD?求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省孝感市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•孝感)如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為(2,0),直線y=x+1與二次函數(shù)的圖象交于A,B兩點(diǎn),其中點(diǎn)A在y軸上.
(1)二次函數(shù)的解析式為y=______;
(2)證明:點(diǎn)(-m,2m-1)不在(1)中所求的二次函數(shù)的圖象上;
(3)若C為線段AB的中點(diǎn),過C點(diǎn)作CE⊥x軸于E點(diǎn),CE與二次函數(shù)的圖象交于D點(diǎn).
①y軸上存在點(diǎn)K,使以K,A,D,C為頂點(diǎn)的四邊形是平行四邊形,則K點(diǎn)的坐標(biāo)是______;
②二次函數(shù)的圖象上是否存在點(diǎn)p,使得S三角形POE=2S三角形ABD?求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《無理數(shù)與實(shí)數(shù)》(02)(解析版) 題型:選擇題

(2010•孝感)如圖所示,數(shù)軸上兩點(diǎn)A,B分別表示實(shí)數(shù)a,b,則下列四個(gè)數(shù)中最大的一個(gè)數(shù)是( )
A.a(chǎn)
B.b
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省孝感市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•孝感)如圖,⊙O是邊長(zhǎng)為6的等邊△ABC的外接圓,點(diǎn)D在弧BC上運(yùn)動(dòng)(不與B,C重合),過點(diǎn)D作DE∥BC,DE交AC的延長(zhǎng)線于點(diǎn)E,連接AD,CD.
(1)在圖1中,當(dāng)AD=2,求AE的長(zhǎng);
(2)當(dāng)點(diǎn)D為的中點(diǎn)時(shí):
①DE與⊙O的位置關(guān)系是______;
②求△ADC的內(nèi)切圓半徑r.

查看答案和解析>>

同步練習(xí)冊(cè)答案