【題目】已知:如圖,AE⊥BC于M,FG⊥BC于N,∠1=∠2
(1)求證:AB∥CD;(2)若∠D=∠3+50°,∠CBD=70°,求∠C的度數(shù).
【答案】(1)證明見解析;(2)30°.
【解析】
(1)根據(jù)平行線的判定求出AE∥FG,根據(jù)平行線的性質(zhì)得出∠A=∠2,求出∠A=∠1,根據(jù)平行線的判定得出即可;
(2)根據(jù)平行線的性質(zhì)得出∠D+∠CBD+∠3=180°,根據(jù)∠D=∠3+50°和∠CBD=70°求出∠3=30°,根據(jù)平行線的性質(zhì)得出∠C=∠3即可.
(1)證明:∵AE⊥BC,FG⊥BC,
∴∠AMB=∠GNM=90°,
∴AE∥FG,
∴∠A=∠2;
又∵∠2=∠1,
∴∠A=∠1,
∴AB∥CD;
(2)解:∵AB∥CD,
∴∠D+∠CBD+∠3=180°,
∵∠D=∠3+50°,∠CBD=70°,
∴∠3=30°,
∵AB∥CD,
∴∠C=∠3=30°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCO的邊OA、OC在坐標軸上,點B坐標為(6,6),將正方形ABCO繞點C逆時針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點G,ED的延長線交線段OA于點H,連CH、CG.
(1)求證:△CBG≌△CDG;
(2)求∠HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關(guān)系,說明理由;
(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過程中,四邊形AEBD能否為矩形?如果能,請求出點H的坐標;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為促進我市經(jīng)濟的快速發(fā)展,加快道路建設,某高速公路建設工程中需修隧道AB,如圖,在山外一點C測得BC距離為200m,∠CAB=54°,∠CBA=30°,求隧道AB的長.(參考數(shù)據(jù):sin54°≈0.81,cos54°≈0.59,tan54°≈1.38, ≈1.73,精確到個位)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知一次函數(shù)y=﹣x+6與x,y軸分別交于A,B兩點,點C(0,n)是線段BO上一點,將△AOB沿直線AC折疊,點B剛好落在x軸負半軸上,則點C的坐標是( )
A. (0,3) B. (0,) C. (0,) D. (0,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y=(k≠0)的圖象交于第二、四象限的A,B兩點,與x軸交于C點.已知A(-2,m),B(n,-2),tan ∠BOC=,則此一次函數(shù)的解析式為________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是( 。
A. 2 B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC、BD交于點O,BE平分∠ABC交AC于點F,交AD于點E,且∠DBF=15°,求證:(1)AO=AE; (2)∠FEO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某小學門口有一直線馬路,交警在門口設有一條寬度為4米的斑馬線,為安全起見,規(guī)定車頭距斑馬線后端的水平距離不得低于2米,現(xiàn)有一旅游車在路口遇紅燈剎車停下,汽車里司機與斑馬線前后兩端的視角分別為∠FAE=15°和∠FAD=30°,司機距車頭的水平距離為0.8米,試問該旅游車停車是否符合上述安全標準?(E,D,C,B四點在平行于斑馬線的同一直線上)(參考數(shù)據(jù):tan15°=2-,≈1.732,≈1.414)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com