【題目】在△ABC中,AD是高,矩形PQMN的頂點P、N分別在AB、AC上,QM在邊BC上,若BC=8cm,AD=6cm,且PN=2PQ,則矩形PQMN的周長為( 。
A. 14.4cmB. 7.2cmC. 11.52cmD. 12.4cm
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+2與y軸交于A點,與反比例函數(shù)(x>0)的圖象交于點M,過M作MH⊥x軸于點H,且tan∠AHO=2.
(1)求k的值;
(2)點N(a,1)是反比例函數(shù)(x>0)圖象上的點,在x軸上是否存在點P,使得PM+PN最?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為6,E,F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=MF;
(2)若AE=2,求FC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD切⊙O于點D,且BD∥OC,連接AC.
(1)求證:AC是⊙O的切線;
(2)若AB=OC=4,求圖中陰影部分的面積(結(jié)果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在矩形ABCD中,點E在AD上,EC平分∠BED.
(1)試判斷△BEC是否為等腰三角形,并說明理由.
(2)若AB=1,∠ABE=45°,求BC的長.
(3)在原圖中畫△FCE,使它與△BEC關(guān)于CE的中點O成中心對稱,此時四邊形BCFE是什么特殊平行四邊形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題情境)如圖,Rt△ABC中,∠ACB=90°,CD⊥AB,我們可以利用△ABC與△ACD相似證明AC2=AD·AB,這個結(jié)論我們稱之為射影定理,試證明這個定理;
(結(jié)論運用)如圖,正方形ABCD的邊長為6,點O是對角線AC、BD的交點,點E在CD上,過點C作CF⊥BE,垂足為F,連接OF.
(1)試利用射影定理證明△ABC∽△BED;
(2)若DE=2CE,求OF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司從2009年開始投入技術(shù)改造資金,經(jīng)技術(shù)改進后,其產(chǎn)品的生產(chǎn)成本不斷降低,具體數(shù)據(jù)如表:
年度 | 2009 | 2010 | 2011 | 2012 |
投入技改資金x(萬元) | 2.5 | 3 | 4 | 4.5 |
產(chǎn)品成本y(萬元/件) | 7.2 | 6 | 4.5 | 4 |
(1)試判斷:從上表中的數(shù)據(jù)看出,y與x符合你學(xué)過的哪個函數(shù)模型?請說明理由,并寫出它的解析式.
(2)按照上述函數(shù)模型,若2013年已投入技改資金5萬元
①預(yù)計生產(chǎn)成本每件比2012年降低多少元?
②如果打算在2013年把每件產(chǎn)品的成本降低到3.2萬元,則還需投入技改資金多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一個三角形,設(shè)其三個內(nèi)角的度數(shù)分別為x°、y°和z°,若x、y、z滿足x2+y2=z2,我們定義這個三角形為美好三角形.
(1)△ABC中,若∠A=40°,∠B=80°,則△ABC (填“是”或“不是”)美好三角形;
(2)如圖,銳角△ABC是⊙O的內(nèi)接三角形,∠C=60°,AC=2,⊙O的直徑是2,求證:△ABC是美好三角形;
(3)已知△ABC是美好三角形,∠A=30°,求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=2∠C,BD平分∠ABC,交AC于D,AE⊥BD于E,AD:DC=3:5,則DE:BE的值是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com