【題目】如圖,點(diǎn)DRt△ABC斜邊AB的中點(diǎn),過點(diǎn)B、C分別作BE∥CD,CE∥BD.

(1)∠A=60°,AC=,求CD的長;

(2)求證:BC⊥DE.

【答案】(1)證明見解析;(2)證明見解析.

【解析】

(1)根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出AB,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得CD=AB;
(2)求出四邊形BECD是菱形,然后根據(jù)菱形的對角線互相垂直證明即可.

(1)解:∵△ABC是直角三角形,∠A=60°,AC=,

∴∠ABC=90°﹣60°=30°,

AB=2AC=2,

∵點(diǎn)DRtABC斜邊AB的中點(diǎn),

CD=AB=×2=

(2)證明:∵BECD,CEBD,

∴四邊形BECD是平行四邊形,

∵點(diǎn)DRtABC斜邊AB的中點(diǎn),

CD=BD=AB,

∴四邊形BECD是菱形,

BCDE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C=90°,點(diǎn)PAC邊上的一點(diǎn),延長BP至點(diǎn)D,使得AD=AP,當(dāng)ADAB時,過DDEACE,AB-BC=4AC=8,則ABP面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一面墻上有一個矩形的門洞,現(xiàn)要將它改為一個圓弧形的門洞,圓弧所在的圓外接矩形,已知矩形的高AC=2米,寬CD=米.

(1)求此圓形門洞的半徑;

(2)求要打掉墻體的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,正方形ABPD的邊長為3,將邊DP繞點(diǎn)P順時針旋轉(zhuǎn)90°PC,E、F分別為線段DP、CP上兩個動點(diǎn)(不與D、P、C重合),且DE=CF,連接BE并延長分別交DF、DCH、G.

(1)①求證:△BPE≌△DPF,②判斷BGDF位置關(guān)系并說明理由;

(2)當(dāng)PE的長度為多少時,四邊形DEFG為菱形并說明理由;

(3)連接AH,在點(diǎn)E、F運(yùn)動的過程中,∠AHB的大小是否發(fā)生改變?若改變,請說出是如何變化的;若不改變,請求出∠AHB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于反比例函數(shù)y=(k≠0),下列所給的四個結(jié)論中,正確的是(  )

A. 若點(diǎn)(3,6)在其圖象上,則(﹣3,6)也在其圖象上

B. 當(dāng)k>0時,yx的增大而減小

C. 過圖象上任一點(diǎn)Px軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為k

D. 反比例函數(shù)的圖象關(guān)于直線y=﹣x成軸對稱

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));當(dāng)﹣1<x<3時,y0,其中正確的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC的三個頂點(diǎn)的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).

(1)若ABC和關(guān)于原點(diǎn)O成中心對稱圖形,畫出圖形并寫出的各頂點(diǎn)的坐標(biāo);

(2)將ABC繞著點(diǎn)O按順時針方向旋轉(zhuǎn)90°得到,畫出圖形,求出線段AC掃過部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有長為30m的籬笆,一面利用墻(墻的最大可用長度為10m),圍成中間隔有一道籬笆(平行于AB)的矩形花圃設(shè)花圃的一邊AB為xm,面積為ym2

(1)求y與x的函數(shù)關(guān)系式;

(2)如果要圍成面積為63m2的花圃,AB的長是多少?

(3)能圍成比63m2更大的花圃嗎?如果能,請求出最大面積;如果不能,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】英國曼徹斯特大學(xué)物理學(xué)家安德烈·蓋姆和康斯坦丁·諾沃肖洛夫,用微機(jī)械剝離法成功從石墨中分離出石墨烯,榮獲了諾貝爾物理學(xué)獎.石墨烯具有優(yōu)異的光學(xué)、電學(xué)、 力學(xué)特性,在材料學(xué)、微納加工、能源、生物醫(yī)學(xué)和藥物傳遞等方面具有重要的應(yīng)用前景,被認(rèn)為是一種未來革命性的材料. 其理論厚度僅 0.000 000 000 34 m,將這個數(shù)據(jù)用科學(xué)記數(shù)法表示為_______m

查看答案和解析>>

同步練習(xí)冊答案