【題目】對(duì)于平面直角坐標(biāo)系上的點(diǎn)和,定義如下:若上存在兩個(gè)點(diǎn),使得點(diǎn)在射線上,且,則稱為的依附點(diǎn).
(1)當(dāng)的半徑為1時(shí)
①已知點(diǎn),,,在點(diǎn)中,的依附點(diǎn)是______;
②點(diǎn)在直線上,若為的依附點(diǎn),求點(diǎn)的橫坐標(biāo)的取值范圍;
(2)的圓心在軸上,半徑為1,直線與軸、軸分別交于點(diǎn),若線段上的所有點(diǎn)都是的依附點(diǎn),請(qǐng)求出圓心的橫坐標(biāo)的取值范圍.
【答案】(1)①D、E;②<t<或﹣<t<﹣;(2)<<﹣2或﹣1<<2
【解析】
(1)①如圖1中,根據(jù)P為⊙C的依附點(diǎn),判斷出當(dāng)r<OP<3r(r為⊙C的半徑)時(shí),點(diǎn)P為⊙C的依附點(diǎn),由此即可判斷.
②分兩種情形:點(diǎn)T在第一象限或點(diǎn)T在第三象限分別求解即可.
(2)分兩種情形:點(diǎn)C在點(diǎn)M的右側(cè),點(diǎn)C在點(diǎn)M的左側(cè)分別求解即可解決問題.
解:(1)①如圖,
∵∠ADB=∠AOB,∠APB=∠AOB,
∴∠ADB=2∠APB,
∴∠DAP=∠APB,
∴AD=DP,
當(dāng)點(diǎn)A和點(diǎn)B重合時(shí),OP=3r
當(dāng)點(diǎn)A與點(diǎn)D重合時(shí),OP=r,
∵0°<∠ACB<180°,
∴r<OP<3r
根據(jù)P為⊙C的依附點(diǎn),可知:當(dāng)r<OP<3r(r為⊙C的半徑)時(shí),點(diǎn)P為⊙C的依附點(diǎn).
如圖1中,∵D(﹣2.5,0),E(0,﹣2),F(1,0),
∴OD=2.5,OE=2,OF=1,
∴1<OD<3,1<OE<3,
∴點(diǎn)D,E是⊙C的依附點(diǎn),
故答案為:D、E;
②如圖2,
∵點(diǎn)T在直線y=x上,
∴點(diǎn)T在第一象限或第三象限,直線y=x與x軸所夾的銳角為45°,
當(dāng)點(diǎn)T在第一象限,當(dāng)OT=1時(shí),作CT⊥x軸,易求點(diǎn)C(,0),當(dāng)OT'=3時(shí),作DT'⊥x軸,易求D(,0),
∴滿足條件的點(diǎn)T的橫坐標(biāo)t的取值范圍<t<,
當(dāng)點(diǎn)T在第三象限,同理可得滿足條件的點(diǎn)T的橫坐標(biāo)t的取值范圍﹣<t<﹣,
綜上所述:滿足條件的點(diǎn)T的橫坐標(biāo)t的取值范圍:<t<或﹣<t<﹣,
(3)如圖3﹣1中,當(dāng)點(diǎn)C在點(diǎn)M的左側(cè)時(shí),
由題意M(﹣1,0),N(0,2)
當(dāng)CN=3時(shí),OC=,此時(shí)C(,0),
當(dāng)CM=1時(shí),此時(shí)C(﹣2,0),
∴滿足條件的的值的范圍為<<﹣2.
如圖3﹣2中,當(dāng)點(diǎn)C在點(diǎn)M的右側(cè)時(shí),
當(dāng)⊙C與直線MN相切時(shí),
由題意M(﹣1,0),N(0,2)
∴MN=,
∴sin∠OMN=,
∴C'M=
∴C'O=﹣1,
∴C′(﹣1,0),
當(dāng)CM=3時(shí),C(2,0),
∴滿足條件的的取值范圍為﹣1<<2,
綜上所述,滿足條件的的取值范圍為:<<﹣2或﹣1<<2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=kx+b經(jīng)過(guò)點(diǎn)A(0,2),B(﹣4,0)和拋物線y=x2.
(1)求直線的解析式;
(2)將拋物線y=x2沿著x軸向右平移,平移后的拋物線對(duì)稱軸左側(cè)部分與y軸交于點(diǎn)C,對(duì)稱軸右側(cè)部分拋物線與直線y=kx+b交于點(diǎn)D,連接CD,當(dāng)CD∥x軸時(shí),求平移后得到的拋物線的解析式;
(3)在(2)的條件下,平移后得到的拋物線的對(duì)稱軸與x軸交于點(diǎn)E,P為該拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作拋物線對(duì)稱軸的垂線,垂足為Q,是否存在這樣的點(diǎn)P,使以點(diǎn)E,P,Q為頂點(diǎn)的三角形與△AOB相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,點(diǎn)從點(diǎn)出發(fā),沿著矩形的邊順時(shí)針方向運(yùn)動(dòng)一周回到點(diǎn),則點(diǎn)圍成的圖形面積與點(diǎn)運(yùn)動(dòng)路程之間形成的函數(shù)關(guān)系式的大致圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知二次函數(shù)(為常數(shù),)的圖象過(guò)點(diǎn)和點(diǎn),函數(shù)圖象最低點(diǎn)的縱坐標(biāo)為.直線的解析式為
求二次函數(shù)的解析式;
直線沿軸向右平移,得直線,與線段相交于點(diǎn),與軸下方的拋物線相交于點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),把沿直線折疊,當(dāng)點(diǎn)恰好落在拋物線上點(diǎn)時(shí)(圖求直線的解析式;
在的條件下,與軸交于點(diǎn),把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,P為上的動(dòng)點(diǎn),當(dāng)為等腰三角形時(shí),求符合條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=kx+b(k<0),經(jīng)過(guò)點(diǎn)(6,0),且與坐標(biāo)軸圍成的三角形的面積是9,與函數(shù)y=(x>0)的圖象G交于A,B兩點(diǎn).
(1)求直線的表達(dá)式;
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫作整點(diǎn).記圖象G在點(diǎn)A、B之間的部分與線段AB圍成的區(qū)域(不含邊界)為W.
①當(dāng)m=2時(shí),直接寫出區(qū)域W內(nèi)的整點(diǎn)的坐標(biāo) ;
②若區(qū)域W內(nèi)恰有3個(gè)整數(shù)點(diǎn),結(jié)合函數(shù)圖象,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了更好地讓學(xué)生適應(yīng)中考體育:“1分鐘跳繩”項(xiàng)目,對(duì)全校九年級(jí)200名學(xué)生進(jìn)行了“1分鐘跳繩”的測(cè)試,現(xiàn)隨機(jī)抽取20名學(xué)生成績(jī)進(jìn)行分析,過(guò)程如下:
收集數(shù)據(jù) 20名學(xué)生的“1分鐘跳繩”成績(jī)(單位:個(gè))如下
110 125 134 135 115 146 148 124 153 145
157 160 162 162 165 168 172 128 137 130
整理數(shù)據(jù) 請(qǐng)你按如下表格分組整理、描述樣本數(shù)據(jù),并把下列表格補(bǔ)充完整.(說(shuō)明:每分鐘跳繩個(gè)數(shù)達(dá)到160個(gè)及以上得滿分)
成績(jī)(個(gè)) | |||||
等級(jí) | |||||
人數(shù) |
成績(jī)(個(gè)) | ||
等級(jí) | ||
人數(shù) |
分析數(shù)據(jù) 請(qǐng)將下列表格補(bǔ)充完整:
平均數(shù) | 中位數(shù) | 滿分率 |
143.8 | 30% |
得出結(jié)論
(1)用樣本中的統(tǒng)計(jì)量估計(jì)全校九年級(jí)學(xué)生“1分鐘跳繩”等級(jí)為__________;
(2)估計(jì)該校九年級(jí)200名學(xué)生中測(cè)試“1分鐘跳繩”等級(jí)為的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】九年級(jí)某數(shù)學(xué)小組在學(xué)完《直角三角形的邊角關(guān)系》這章后,決定用所學(xué)的知識(shí)設(shè)計(jì)遮陽(yáng)篷(要求:遮陽(yáng)篷既能最大限度地遮擋夏天炎熱的陽(yáng)光,又能最大限度地使冬天溫暖的陽(yáng)光射入室內(nèi)).他們制定了設(shè)計(jì)方案,并利用課余時(shí)間完成了調(diào)查和實(shí)地測(cè)量.調(diào)查和測(cè)量項(xiàng)目及結(jié)果如下表:
項(xiàng)目 | 內(nèi)容 | |
課題 | 設(shè)計(jì)遮陽(yáng)篷 | |
測(cè)量示意圖 | 如圖,設(shè)計(jì)了垂直于墻面AC的遮陽(yáng)篷CD,AB表示窗戶的高度.榆次區(qū)一年中,夏至這一天的正午時(shí)刻,太陽(yáng)光線DA與遮陽(yáng)篷CD的夾角∠ADC最大;冬至這一天的正午時(shí)刻,太陽(yáng)光線DB與遮陽(yáng)篷CD的夾角∠CDB最。 | |
調(diào)查數(shù)據(jù) | ||
測(cè)量數(shù)據(jù) | ||
… | … |
根據(jù)上述方案及數(shù)據(jù),求遮陽(yáng)篷的長(zhǎng).
(結(jié)果精確到,參考數(shù)據(jù):,,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學(xué)舉行“漢字聽寫”比賽,賽后整理參賽學(xué)生的成績(jī),將學(xué)生的成績(jī)分為A,B,C,D四個(gè)等級(jí),并將結(jié)果繪制成圖1的條形統(tǒng)計(jì)圖和圖2扇形統(tǒng)計(jì)圖,但均不完整.請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)求參加比賽的學(xué)生共有多少名?并補(bǔ)全圖1的條形統(tǒng)計(jì)圖.
(2)在圖2扇形統(tǒng)計(jì)圖中,m的值為_____,表示“D等級(jí)”的扇形的圓心角為_____度;
(3)組委會(huì)決定從本次比賽獲得A等級(jí)的學(xué)生中,選出2名去參加全市中學(xué)生“漢字聽寫”大賽.已知A等級(jí)學(xué)生中男生有1名,請(qǐng)用列表法或畫樹狀圖法求出所選2名學(xué)生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=-1,且拋物線經(jīng)過(guò)A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.
(1)若直線y=mx+n經(jīng)過(guò)B、C兩點(diǎn),求直線BC和拋物線的解析式;
(2)在拋物線的對(duì)稱軸x=-1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P為拋物線的對(duì)稱軸x=-1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com