【題目】宣和中學(xué)圖書館今日購進(jìn)甲、乙兩種圖書,每本甲種圖書的進(jìn)價比每本乙種圖書的進(jìn)價高20元,花780元購進(jìn)甲種圖書的數(shù)量與花540元購進(jìn)乙種圖書的數(shù)量相同.
(1)求甲、乙兩種圖書每本的進(jìn)價分別是多少元;
(2)宣和中學(xué)購進(jìn)甲、乙兩種圖書共70本,總購書費用不超過3950元,則最多購進(jìn)甲種圖書多少本.
【答案】(1)甲、乙兩種圖書每本的進(jìn)價分別為65元、45元;(2)甲種圖書最多購進(jìn)40本.
【解析】
(1)設(shè)乙種圖書每本的進(jìn)價為x元,則甲種圖書每本的進(jìn)價是(x+20)元,根據(jù)花780元購進(jìn)甲圖書的數(shù)量與花540元購進(jìn)乙圖書的數(shù)量相同,列方程求解;
(2)設(shè)購進(jìn)甲種圖書m本,則購進(jìn)乙種圖書為(70-m)本,根據(jù)總購書費用不超過3950元,列不等式求解.
(1)設(shè)乙種圖書進(jìn)價x元,則甲種圖書進(jìn)價為(x+20)元
解得,x=45,
經(jīng)檢驗,x=45是原分式方程的根,
x+20=65
答:甲、乙兩種圖書每本的進(jìn)價分別為65元、45元.
(2)設(shè)甲種圖書購進(jìn)a本,
65a+45(70-a)≤3950,
解得,a≤40,
答:甲種圖書最多購進(jìn)40本.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA切⊙O于點A,PC過點O且與⊙O交于B,C兩點,若PA=6cm,PB=2cm,則△PAC的面積是_____cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】全國各地都在推行新型農(nóng)村醫(yī)療合作制度.南充市也正在推行:村民只要每人每年交元錢,就可以加入合作醫(yī)療,每年先由自己支付醫(yī)療費,年終時可得到按一定比例返回的返回款.小東與同學(xué)隨機(jī)調(diào)查了他們鎮(zhèn)的一些農(nóng)民,根據(jù)收集到的數(shù)據(jù)繪制了以下的統(tǒng)計圖,請根據(jù)以下信息解答問題:
(1)本次調(diào)查了多少村民?被調(diào)查的村民中,有多少人參加合作醫(yī)療得到了返回款?
(2)該鎮(zhèn)若有個村民,請你估計有多少人參加了合作醫(yī)療?要使兩年后參加合作醫(yī)療的人數(shù)增加到人,假設(shè)這兩年的年增長率相同,求這個年增長率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形中,分別為上的點,且,連接并延長,與的延長線交于點,連接.
(1)求證:四邊形是平行四邊形;
(2)連接,若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,過⊙T外一點P引它的兩條切線,切點分別為M,N,若,則稱P為⊙T的環(huán)繞點.
(1)當(dāng)⊙O半徑為1時,
①在中,⊙O的環(huán)繞點是___________;
②直線y=2x+b與x軸交于點A,y軸交于點B,若線段AB上存在⊙O的環(huán)繞點,求b的取值范圍;
(2)⊙T的半徑為1,圓心為(0,t),以為圓心,為半徑的所有圓構(gòu)成圖形H,若在圖形H上存在⊙T的環(huán)繞點,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“七巧板”是我們祖先的一項卓越創(chuàng)造,可以拼出許多有趣的圖形,被譽(yù)為“東方魔板”,圖①是由邊長的正方形薄板分成7塊制作成的“七巧板”圖②是用該“七巧板”拼成的一個“家”的圖形,該“七巧板”中7塊圖形之一的正方形邊長為_______(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線為一、三象限角平分線,點關(guān)于軸的對稱點稱為的一次反射點,記作;關(guān)于直線的對稱點稱為點的二次反射點,記作.
例如,點的一次反射點為,二次反射點為.
根據(jù)定義,回答下列問題:
(1)點的一次反射點為__________,二次反射點為____________;
(2)當(dāng)點在第一象限時,點,,中可以是點的二次反射點的是___________;
(3)若點在第二象限,點,分別是點的一次、二次反射點,為等邊三角形,求射線與軸所夾銳角的度數(shù).
(4)若點在軸左側(cè),點,分別是點的一次、二次反射點,是等腰直角三角形,請直接寫出點在平面直角坐標(biāo)系中的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于兩點,與軸交于點連接,已知,且,
(1)求拋物線的解析式;
(2)若點為直線下方拋物線上一動點,過點作軸交于點,連接
①若,求此時點的坐標(biāo);
②若點關(guān)于直線的對稱點恰好落在軸上,求此時點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,方格紙中的每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上.
(1)將△ABC向下平移5個單位再向右平移1個單位后得到對應(yīng)的△A1B1C1,畫出△A1B1C1;
(2)畫出△A1B1C1關(guān)于y軸對稱的△A2B2C2;
(3)P(a,b)是△ABC的邊AC上一點,請直接寫出經(jīng)過兩次變換后在△A2B2C2中對應(yīng)的點P2的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com