【題目】某商場一種商品的進(jìn)價為每件 30 元,售價為每件 40 元.每天可以銷售 48 件,為盡快減少庫存,商場決定降價促銷.
(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價降至每件 32.4 元,求兩次下降的百分率;
(2) 經(jīng)調(diào)查,若該商品每降價 0.5 元,每天可多銷售 4 件,那么每天要想獲得 510 元的利潤,每件應(yīng)降價多少元?
【答案】(1)10%(2)2.5 元.
【解析】
(1)設(shè)每次降價的百分率為 x,(1﹣x)2 為兩次降價后的百分率,40元 降至 32.4元 就是方程的等量條件,列出方程求解即可;
(2)設(shè)每天要想獲得 510 元的利潤,且更有利于減少庫存,則每件商品應(yīng)降價 y 元,由銷售問題的數(shù)量關(guān)系建立方程求出其解即可
解:(1)設(shè)每次降價的百分率為 x.
40×(1﹣x)2=32.4
x=10%或 190%(190%不符合題意,舍去)
答:該商品連續(xù)兩次下調(diào)相同的百分率后售價降至每件 32.4元,兩次下降的百分率為10%;
(2)設(shè)每天要想獲得 510 元的利潤,且更有利于減少庫存,則每件商品應(yīng)降價 y 元,
由題意,得
解得:=1.5,=2.5,
∵有利于減少庫存,∴y=2.5.
答:要使商場每月銷售這種商品的利潤達(dá)到 510 元,且更有利于減少庫存,則每件商品應(yīng)降價 2.5 元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF.連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請判斷:FG與CE的關(guān)系是___;
(2)如圖2,若點E,F(xiàn)分別是邊CB,BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請作出判斷并給予證明;
(3)如圖3,若點E,F(xiàn)分別是邊BC,AB延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列選項中,是反比例函數(shù)關(guān)系的為
A. 在直角三角形中,30°角所對的直角邊y與斜邊x之間的關(guān)系
B. 在等腰三角形中,頂角y與底角x之間的關(guān)系
C. 圓的面積S與它的直徑d之間的關(guān)系
D. 面積為20的菱形,其中一條對角線y與另一條對角線x之間的關(guān)系
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B為反比例函數(shù)y=圖象上的點,AD⊥x軸于點D,直線AB分別交x軸,y軸于點E,C,CO=OE=ED.
(1)求直線AB的函數(shù)解析式;
(2)F為點A關(guān)于原點的對稱點,求△ABF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,,點、分別是、邊上的動點.
(1)AC等于多少;
(2)若,且點關(guān)于的對稱點落在邊上,求的值;
(3)設(shè),直線交直線于點,求與面積之和的最小值.(用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC的直角邊BC在x軸負(fù)半軸上,斜邊AC上的中線BD的反向延長線交y軸負(fù)半軸于點E,反比例函數(shù)y=﹣(x<0)的圖象過點A,則△BEC的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,CD∥AB,AD=BC.已知A(﹣2,0),B(6,0),D(0,3),函數(shù)y=(x>0)的圖象G經(jīng)過點C.
(1)求點C的坐標(biāo)和函數(shù)y=(x>0)的表達(dá)式;
(2)將四邊形ABCD向上平移2個單位得到四邊形A'B'C'D',問點B'是否落在圖象G上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為大力弘揚“奉獻(xiàn)、友愛、互助、進(jìn)步”的志愿服務(wù)精神,傳播“奉獻(xiàn)他人、提升自我”的志愿服務(wù)理念,合肥市某中學(xué)利用周末時間開展了“助老助殘、社區(qū)服務(wù)、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個志愿服務(wù)活動(每人只參加一個活動),九年級某班全班同學(xué)都參加了志愿服務(wù),班長為了解志愿服務(wù)的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)請把折線統(tǒng)計圖補(bǔ)充完整;
(2)求扇形統(tǒng)計圖中,網(wǎng)絡(luò)文明部分對應(yīng)的圓心角的度數(shù);
(3)小明和小麗參加了志愿服務(wù)活動,請用樹狀圖或列表法求出他們參加同一服務(wù)活動的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一位籃球運動員在距離籃圈中心水平距離4m處起跳投籃,球沿一條拋物線運動,當(dāng)球運動的水平距離為2.5m時,達(dá)到最大高度3.5m,然后準(zhǔn)確落入籃框內(nèi).已知籃圈中心距離地面高度為3.05m,在如圖所示的平面直角坐標(biāo)系中,下列說法正確的是( 。
A. 此拋物線的解析式是y=﹣x2+3.5
B. 籃圈中心的坐標(biāo)是(4,3.05)
C. 此拋物線的頂點坐標(biāo)是(3.5,0)
D. 籃球出手時離地面的高度是2m
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com