【題目】已知二次函數(shù)y=mx2+(3m+1)x+3.
(1)當(dāng)m取何值時,此二次函數(shù)的圖象與x軸有兩個交點;
(2)當(dāng)拋物線y=mx2+(3m+1)x+3與x軸兩個交點的橫坐標(biāo)均為整數(shù),且m為正整數(shù)時,求此拋物線的表達(dá)式.

【答案】
(1)解:由題意可知,△=b2﹣4ac=(3m+1)2﹣4m×3=(3m﹣1)2>0,

解得:m≠

∵二次函數(shù)的圖象與x軸有兩個交點,

∴m≠0,

∴當(dāng)m≠ 且m≠0時,此二次函數(shù)的圖象與x軸有兩個交點


(2)解:有求根公式,得:x= = ,

∴x1=﹣3,x2=﹣ ,

∵拋物線與x軸兩個交點的橫坐標(biāo)均為整數(shù),且m為正整數(shù),

∴m=1,

∴拋物線的解析式為:y=x2+4x+3


【解析】(1)根據(jù)一元二次方程的根的判別式,直接計算即可;(2)根據(jù)求根公式,求出兩根,由拋物線與x軸的兩個交點的橫坐標(biāo)都為正整數(shù),求出m的值,可得拋物線解析式.
【考點精析】本題主要考查了拋物線與坐標(biāo)軸的交點的相關(guān)知識點,需要掌握一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當(dāng)b2-4ac>0時,圖像與x軸有兩個交點;當(dāng)b2-4ac=0時,圖像與x軸有一個交點;當(dāng)b2-4ac<0時,圖像與x軸沒有交點.才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知b2-4ac是一元二次方程ax2+bx+c=0(a≠0)的一個實數(shù)根,則ab的取值范圍為( 。
A.ab≥
B.ab
C.ab≥
D.ab

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算: ﹣( ﹣1)0+( 2﹣4sin45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好地貫徹落實國家關(guān)于“強化體育課和課外鍛煉,促進(jìn)青少年身心健康、體魄強健”的精神,某校大力開展體育活動.該校九年級三班同學(xué)組建了足球、籃球、乒乓球、跳繩四個體育活動小組.經(jīng)調(diào)查,全班同學(xué)全員參與,各活動小組人數(shù)分布情況的扇形圖和條形圖如下:

(1)求該班學(xué)生人數(shù);
(2)請你補全條形圖;
(3)求跳繩人數(shù)所占扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D是AC上一點,聯(lián)結(jié)BD,∠CBD=∠A.
(1)求證:△CBD∽△CAB;
(2)若D是AC中點,CD=3,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,D是半圓上的兩點,O為圓心,BC是直徑,∠D=35°,求∠OAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=x2+mx+n﹣1的對稱軸為x=2.
(1)m的值為;
(2)若拋物線與y軸正半軸交于點A,其對稱軸與x軸交于點B,當(dāng)△OAB是等腰直角三角形時,求n的值;
(3)點C的坐標(biāo)為(3,0),若該拋物線與線段OC有且只有一個交點,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形EFGH內(nèi)接于△ABC,且邊FG落在BC上,AD⊥BC,BC=3cm,AD=2cm,EF= EH,求EH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小慧根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y=|x﹣1|的圖象與性質(zhì)進(jìn)行了探究.下面是小慧的探究過程,請補充完整:
(1)函數(shù)y=|x﹣1|的自變量x的取值范圍是;
(2)列表,找出y與x的幾組對應(yīng)值.

x

﹣1

0

1

2

3

y

b

1

0

1

2

其中,b=;
(3)在平面直角坐標(biāo)系xOy中,描出以上表中對對應(yīng)值為坐標(biāo)的點,并畫出該函數(shù)的圖象;
(4)寫出該函數(shù)的一條性質(zhì):

查看答案和解析>>

同步練習(xí)冊答案