【題目】已知在中,,直線經(jīng)過點(不經(jīng)過點或點),點關(guān)于直線的對稱點為,連接.
(1)如圖1,根據(jù)已知可以判斷點在以點為圓心,為半徑的圓上.請你直接寫出的度數(shù)(用含的式子表示).
(2)如圖2,當時,過點作的垂線與直線交于點,求證:;
(3)如圖3,當時,記直線與的交點為,連接.將直線繞點旋轉(zhuǎn),當線段的長取得最大值時,直接寫出的值.
【答案】(1);(2)見解析;(3).
【解析】
(1)由線段垂直平分線的性質(zhì)可得AD=AC=AB,即可證點B,C,D在以點A為圓心,AB為半徑的圓上;由圓周角定理,可求∠BDC的度數(shù);
(2)連接CE,由題意可證△ABC,△DCE是等邊三角形,可得AC=BC,∠DCE=60°=∠ACB,CD=CE,根據(jù)“SAS”可證△BCD≌△ACE,可得AE=BD;
(3)取AC的中點O,連接OB,OF,BF,由三角形的三邊關(guān)系可得,當點O,點B,點F三點共線時,BF最長,根據(jù)等腰三角形的性質(zhì)和勾股定理可求,OH=HC,BH=3HC,即可求tan∠FBC的值.
證明:(1)如圖1,連接DA,并延長DA交BC于點M,
∵點C關(guān)于直線l的對稱點為點D,
∴AD=AC,且AB=AC,
∴AD=AB=AC,
∴點B,C,D在以點A為圓心,AB為半徑的圓上
∴
故答案為: .
(2)如圖2,連接,
圖2
是等邊三角形
點關(guān)于直線的對稱點為點,
,且
是等邊三角形,
,且
(3)如圖3,取的中點,連接,
圖3
在中,
當點,點,點三點共線時,最長,
如圖4,過點作,
圖4
,且,
點是中點,
.
科目:初中數(shù)學 來源: 題型:
【題目】我市“上品”房地產(chǎn)開發(fā)公司于2010年5月份完工一商品房小區(qū),6月初開始銷售,其中6月的銷售單價為0.7萬元,7月的銷售單價為0.72萬元,且每月銷售價格(單位:萬元)與月份(,為整數(shù))之間滿足一次函數(shù)關(guān)系:每月的銷售面積為 (單位:),其中.(,為整數(shù)).
(1)求與月份的函數(shù)關(guān)系式;
(2)6~11月中,哪一個月的銷售額最高?最高銷售額為多少萬元?
(3)2010年11月時,因會受到即將實行的“國八條”和房產(chǎn)稅政策的影響,該公司銷售部預計12月份的銷售面積會在11月銷售面積基礎上減少,于是決定將12月份的銷售價格在11月的基礎上增加,該計劃順利完成.為了盡快收回資金,2011年月公司進行降價促銷,該月銷售額為萬元.這樣12月、1月的銷售額共為4618.4萬元,請根據(jù)以上條件求出的值為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,∠A=30°.
(1)用尺規(guī)作圖作AB邊上的中垂線DE,交AC于點D,交AB于點E.(保留作圖痕跡,不要求寫作法和證明);
(2)連接BD,求證:BD平分∠CBA.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是一個地鐵站入口的雙翼閘機.如圖2,它的雙翼展開時,雙翼邊緣的端點A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機側(cè)立面夾角∠PCA=∠BDQ=30°.當雙翼收起時,可以通過閘機的物體的最大寬度為( )
A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖.已知四邊形ABCD是平行四邊形,結(jié)合作圖痕跡,下列說法不正確的是( )
A.與垂直
B.
C.平分
D.若的周長為4,則平行四邊形的周長為8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB=AC.如圖,D、E為∠BAC的平分線上的兩點,連接BD、CD、BE、CE;如圖4, D、E、F為∠BAC的平分線上的三點,連接BD、CD、BE、CE、BF、CF;如圖5, D、E、F、G為∠BAC的平分線上的四點,連接BD、CD、BE、CE、BF、CF、BG、CG……依此規(guī)律,第17個圖形中有全等三角形的對數(shù)是( 。
A.17B.54C.153D.171
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公園的人工湖邊上有一座假山,假山頂上有一豎起的建筑物CD,高為10米,數(shù)學小組為了測量假山的高度DE,在公園找了一水平地面,在A處測得建筑物點D(即山頂)的仰角為35°,沿水平方向前進20米到達B點,測得建筑物頂部C點的仰角為45°,求假山的高度DE.(結(jié)果精確到1米,參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年“五一”期間,小明一家到某農(nóng)莊采摘,在村口A處,小明接到農(nóng)莊發(fā)來的定位,發(fā)現(xiàn)農(nóng)莊C在自己的北偏東45°方向,于是沿河邊筆直綠道l步行200米到達B處,此時定位顯示農(nóng)莊C在自己的北偏東30°方向,電話聯(lián)系,得知農(nóng)莊主已到農(nóng)莊C正南方的橋頭D處等待,請問還要沿綠道直走多少米才能到達橋頭D處.(精確到1米,參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com