【題目】如圖,直線的解析表達式為,且軸交于點.直線經(jīng)過點,直線交于點

1)求點的坐標;

2)求直線的解析表達式;

3)在軸上求作一點,使的和最小,直接寫出的坐標.

【答案】1D1,0);(2yx6;(3,0.

【解析】

1)已知l1的解析式,令y0求出x的值即可;

2)設l2的解析式為ykxb,代入A、B坐標求出k,b的值即可;

3)作點B關于x軸的對稱點B’, 連接B’Cx軸于M,則點M即為所求,聯(lián)立解析式可求出點C坐標,然后求出直線B’C的解析式,令y0求出x的值即可.

解:(1)由y3x3,令y0,得3x30,

解得:x1

D1,0);

2)設直線l2的表達式為ykxb,

由圖象知:A4,0),B3,),代入表達式ykxb

,解得:

∴直線l2的解析表達式為yx6

3)作點B關于x軸的對稱點B’,則B’的坐標的為(3,),連接B’Cx軸于M,則點M即為所求,

聯(lián)立,解得:,

C2,-3),

設直線B’C的解析式為:y=mx+n,代入B’3),C2,-3),

,解得:,

∴直線B’C的解析式為:yx12,

y0,即x120,

解得:,

的坐標為(,0.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,點D、E、F分別在邊、、上,且,.下列四種說法:

四邊形是平行四邊形;如果,那么四邊形是矩形;

如果平分,那么四邊形是菱形;

如果,那么四邊形是菱形.

其中,正確的有 .(只填寫序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中央電視臺的朗讀者節(jié)目激發(fā)了同學們的讀書熱情,為了引導學生多讀書,讀好書,某校對八年級部分學生的課外閱讀量進行了隨機調查,整理調查結果發(fā)現(xiàn),學生課外閱讀的本數(shù)最少的有5本,最多的有8本,并根據(jù)調查結果繪制了不完整的圖表:

本數(shù)(本)

人數(shù)(人數(shù))

百分比

5

a

0.2

6

18

0.36

7

14

b

8

8

0.16

合計

c

1

根據(jù)以上提供的信息,解答下列問題:

1a_____,b_____c______;

2)補全上面的條形統(tǒng)計圖;

3)若該校八年級共有1200名學生,請你分析該校八年級學生課外閱讀7本及以上的有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象在第一象限內(nèi)交于A(1,6),B(3,n)兩點.

(1)求這兩個函數(shù)的表達式;

(2)根據(jù)圖象直接寫出kx+b﹣0的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解答下列問題:

1)閱讀理解:

如圖1,在中,若,,求邊上的中線的取值范圍.

解決此問題可以用如下方法:延長到點使,再連接(或將繞著逆時針旋轉得到,把、集中在中,利用三角形三邊的關系即可判斷.中線的取值范圍是______.

2)問題解決:

如圖2,在中,邊上的中點,于點,于點,于點,連接,求證:.

3)問題拓展:

如圖3,在四邊形中,,,,以為頂點作一個角,角的兩邊分別交,兩點,連接,探索線段,,之間的數(shù)量關系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司在甲、乙倉庫共存放某種原料450噸,如果運出甲倉庫所存原料的60%,乙倉庫所存原料的40%,那么乙倉庫剩余的原料比甲倉庫剩余的原料多30噸.

(1)求甲、乙兩倉庫各存放原料多少噸?

(2)現(xiàn)公司需將300噸原料運往工廠,從甲、乙兩個倉庫到工廠的運價分別為120/噸和100/噸.經(jīng)協(xié)商,從甲倉庫到工廠的運價可優(yōu)惠a元噸(10≤a≤30),從乙倉庫到工廠的運價不變,設從甲倉庫運m噸原料到工廠,請求出總運費W關于m的函數(shù)解析式(不要求寫出m的取值范圍);

(3)在(2)的條件下,請根據(jù)函數(shù)的性質說明:隨著m的增大,W的變化情況.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣(x﹣1)2+4與x軸交于點A,B(點A在點B的左側),與y軸交于點C,CD∥x軸交拋物線于另一點D,連結AC,DE∥AC交邊CB于點E.

(1)求A,B兩點的坐標;

(2)求CDE與BAC的面積之比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名隊員參加設計訓練,成績分別被制成下列兩個統(tǒng)計圖:

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

平均數(shù)(環(huán))

中位數(shù)(環(huán))

眾數(shù)(環(huán))

方差

1)表格中 , , ;

2)分別運用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊訓練成績,若選派其中一名參賽,你認為應選哪名隊員?

3)如果乙再射擊次,命中環(huán),那么乙的射擊成績的方差 .(填“變大”“變小”或“不變”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是學習分式方程應用時,老師板書的問題和兩名同學對該題的解答.(老師找聰聰和明明分別用不同的方法解答此題)

1)聰聰同學所列方程中的表示_______________________________________.

2)明明一時緊張沒能做出來,請你幫明明完整的解答出來.

查看答案和解析>>

同步練習冊答案