【題目】如圖,將四邊形紙片ABCD沿對角線BD折疊,點C落在點E處,BE交AD于點F,連接AE.∠C=90°,BF=DF,AE∥BD.證明:四邊形ABCD是矩形。

【答案】見解析

【解析】試題分析: 先證明AD//BC和AD=BC,再由一組對邊平行且相等得四邊形ABCD是平行四邊形,由一個角是直角的平行四邊形是矩形.

試題解析:

證明: ∵△BED是由△BCD折疊得到,

∴BE=BC, ∠1= ∠2,

∵BF=DF,

∴ ∠2= ∠3,

∴ ∠1= ∠3,

∴ AD ∥BC,

∵AE ∥BD,

∴∠4= ∠2, ∠5= ∠3,

即∠5= ∠4

∴AF=EF,即AD=BE=BC

∴四邊形ABCD是平行四邊形

∵ ∠C=90°

∴四邊形ABCD是矩形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列代數(shù)式變形中,是因式分解的是( )
A.3ab(b﹣2)=3ab2﹣6ab
B.4x2﹣12x+3=4x(x﹣3)+3
C.3x﹣6y+6=3(x﹣2y)
D.﹣4x2+4x﹣1=﹣(2x﹣1)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車同時從M地出發(fā),以各自的速度勻速向N地行駛.甲車先到達N地,停留1h后按原路以原速勻速返回,直到兩車相遇,乙車的速度為50km/h.如圖是兩車之間的距離y(km)與乙車行駛時間x(h)之間的函數(shù)圖象.

(1)甲車的速度是 km/h,M、N兩地之間相距 km;
(2)求兩車相遇時乙車行駛的時間;
(3)求線段AB所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學小組的兩位同學準備測量兩幢教學樓之間的距離,如圖,兩幢教學樓AB和CD之間有一景觀池(AB⊥BD,CD⊥BD),一同學在A點測得池中噴泉處E點的俯角為42°,另一同學在C點測得E點的俯角為45°(點B,E,D在同一直線上),兩個同學已經(jīng)在學校資料室查出樓高AB=15m,CD=20m,求兩幢教學樓之間的距離BD.

(結果精確到0.1m,參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題:

(1)三邊長為5,12,13的三角形是直角三角形;

(2)等邊三角形是軸對稱圖形,它只有一條對稱軸;

(3)有兩邊及第三邊上的高線對應相等的兩個銳角三角形全等;

(4)把正比例函數(shù)y=2x的圖象向上平移兩個單位所得的直線表達式為y=2x+2.

其中真命題的是( 。

A. (1)(2)(3) B. (1)(3)(4) C. (1)(2)(4) D. (1)(4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法錯誤的是(

A.整數(shù)和分數(shù)稱有理數(shù)B.互為相反數(shù)的兩個數(shù)的絕對值相等

C.正分數(shù)、零和負分數(shù)統(tǒng)稱分數(shù)D.所有有理數(shù)都可以用數(shù)軸上的點來表示

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個盒子里有完全相同的三個小球,球上分別標上數(shù)字﹣1、1、2.隨機摸出一個小球(不放回)其數(shù)字記為p,再隨機摸出另一個小球其數(shù)字記為q,則滿足關于x的方程x2+px+q=0有實數(shù)根的概率是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】P(﹣1,2)關于y軸對稱點的坐標是( 。

A. (1,2) B. (﹣1,﹣2) C. (1,﹣2) D. (2,﹣1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】P2,4)與點Q(-3,4)之間的距離是____.

查看答案和解析>>

同步練習冊答案