【題目】某文體商店計劃購進(jìn)一批同種型號的籃球和同種型號的排球,每一個排球的進(jìn)價是每一個籃球的進(jìn)價的90%,用3600元購買排球的個數(shù)要比用3600元購買籃球的個數(shù)多10個.

1)問每一個籃球、排球的進(jìn)價各是多少元?

2)該文體商店計劃購進(jìn)籃球和排球共100個,且排球個數(shù)不低于籃球個數(shù)的3倍,籃球的售價定為每一個100元,排球的售價定為每一個90元.若該批籃球、排球都能賣完,問該文體商店應(yīng)購進(jìn)籃球、排球各多少個才能獲得最大利潤?最大利潤是多少?

【答案】1)每一個籃球的進(jìn)價是40元,每一個排球的進(jìn)價是36元;(2)該文體商店應(yīng)購進(jìn)籃球25個、排球75個才能獲得最大利潤,最大利潤是5550元.

【解析】

1)設(shè)每一個籃球的進(jìn)價是x元,則每一個排球的進(jìn)價是0.9x元,根據(jù)用3600元購買排球的個數(shù)要比用3600元購買籃球的個數(shù)多10個列出方程,解之即可得出結(jié)論;

2)設(shè)文體商店計劃購進(jìn)籃球m個,總利潤y元,根據(jù)題意用m表示y,結(jié)合m的取值范圍和m為整數(shù),即可得出獲得最大利潤的方案.

解:(1)設(shè)每一個籃球的進(jìn)價是x元,則每一個排球的進(jìn)價是0.9x元,依題意有

,解得x40,

經(jīng)檢驗,x40是原方程的解,

0.9x0.9×4036

故每一個籃球的進(jìn)價是40元,每一個排球的進(jìn)價是36元;

2)設(shè)文體商店計劃購進(jìn)籃球m個,總利潤y元,則

y=(10040)m+(9036)(100m)=6m+5400

依題意有,

解得0m≤25m為整數(shù),

m為整數(shù),

ym的增大而增大,

m25時,y最大,這時y6×25+54005550,

100-2575(個).

故該文體商店應(yīng)購進(jìn)籃球25個、排球75個才能獲得最大利潤,最大利潤是5550元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在足夠大的空地上有一段長為的舊墻,某人利用舊墻和木欄圍成一個矩形菜園,其中,已知矩形菜園的一邊靠墻,另三邊一共用了的木欄.

(1),所圍成的矩形菜園的面積為,求所利用的舊墻的長;

(2)求矩形菜園面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,,點EBC的中點,以CD為直徑在正方形外部作半圓CFD,點F為半圓的中點,連接,圖中陰影部分的面積是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在ABC中,ACBCm,DAB邊上的一點,將∠B沿著過點D的直線折疊,使點B落在AC邊的點P處(不與點A,C重合),折痕交BC邊于點E

1)特例感知 如圖1,若∠C60°,DAB的中點,求證:APAC;

2)變式求異 如圖2,若∠C90°,m6,AD7,過點DDHAC于點H,求DHAP的長;

3)化歸探究 如圖3,若m10AB12,且當(dāng)ADa時,存在兩次不同的折疊,使點B落在AC邊上兩個不同的位置,請直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點E在邊AB上,BE1,∠DAM45°,點F在射線AM上,且AF,過點FAD的平行線交BA的延長線于點H,CFAD相交于點G,連接EC、EG、EF.下列結(jié)論:①ECF的面積為;②AEG的周長為8;③EG2DG2+BE2;其中正確的是(  )

A.①②③B.①③C.①②D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組:請結(jié)合題意填空,完成本題的解答:

1)解不等式①,得:  ;

2)解不等式②得:  ;

3)把不等式①和②的解集在數(shù)軸上表示出來;

4)原不等式組的解集為:  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點D是邊BC上一動點(不與B、C重合),DEAC于點E,且.下列結(jié)論:①;②當(dāng)時,全等;③為直角三角形時,BD等于8.其中正確的有__________.(選填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)一批成本為每件40元的商品,經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量(件與銷售單價(元之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.

1)求該商品每天的銷售量與銷售單價之間的函數(shù)關(guān)系式;

2)若商店要使銷售該商品每天獲得的利潤等于1000元,每天的銷售量應(yīng)為多少件?

3)若商店按單價不低于成本價,且不高于65元銷售,則銷售單價定為多少元時,才能使銷售該商品每天獲得的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yx2+bx+c經(jīng)過A 0,3),B 4,3)兩點,與x軸交于點EF,以AB為邊作矩形ABCD,其中CD邊經(jīng)過拋物線的項點M,點P是拋物線上一動點(點P不與點A,B重合),過點Py軸的平行線1與直線AB交于點G,與直線BD交于點H,連接AF交直線BD于點N

1)求該拋物線的解析式以及頂點M的坐標(biāo);

2)當(dāng)線段PH2GH時,求點P的坐標(biāo);

3)在拋物線上是否存在點P,使得以點P,EN,F為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案